W. Liu et al. / Tetrahedron Letters 43 (2002) 1373–1375
1375
improve upon this selectivity were unsuccessful. Those
efforts included the utilization of other Lewis acids
(MgBr2, LiCl, Et2BOMe, Ti(OiPr)4, SnCl4) to complex
with the aldehyde 10 in order to distinguish the two
benzyl ether groups, and different ratios of TiCl4 and
the base. The two isomers can be separated carefully by
silica gel chromatography and were obtained in 71%
combined yield from alcohol 9. It nevertheless set the
stage for coupling of 11 with the caprolactam moiety to
construct the bengamide E molecule.
5044; (d) Marshall, J. A.; Luke, G. P. J. Org. Chem.
1993, 58, 6229–6234; (e) Chida, N.; Tobe, T.; Murai, K.;
Yamazaki, K.; Ogawa, S. Heterocycles 1994, 38, 2383–
2388; (f) Mukai, C.; Kataoka, O.; Hanaoka, M. J. Org.
Chem. 1995, 60, 5910–5918; (g) Mukai, C.; Moharram, S.
M.; Kataoka, O.; Hanaoka, M. J. Chem. Soc., Perkin
Trans. 1 1995, 2849–2854; (h) Clark, T. J.; Boeckman, R.
K., Jr. Book of Abstracts, 219th National Meeting of the
American Chemical Society, San Francisco, CA, March
26–31, 2000, Abstr. ORGN-58; (i) Kinder, F. R., Jr.;
Wattanasin, S.; Versace, R. W.; Bair, K. W.; Bontempo,
J.; Green, M. A.; Lu, Y. J.; Marepalli, H. R.; Philips, P.
E.; Roche, D.; Tran, L. D.; Wang, R.; Waykole, L.; Xu,
D. D.; Zabludoff, S. J. Org. Chem. 2001, 66, 2118–2122.
4. Banwell, M. G.; McRae, K. J. J. Org. Chem. 2001, 66,
6768–6774.
5. For a review on tartaric acid and tartrates in the synthe-
sis of bioactive molecules, see: Ghosh, A. K.; Koltun, E.
S.; Bilcer, G. Synthesis 2001, 1281–1301.
6. Sulfone 7 was prepared in two steps from 2-mercaptoben-
zothiazole and isobutyl bromide in 88% yield: (i) NaH,
N-methyl-2-pyrrolidinone, rt; (ii) Oxone®, THF/water,
reflux.
Treatment of 11 with
L
-(−)-a-amino-o-caprolactam
hydrochloride in the presence of sodium 2-ethylhex-
anoate (2 equiv.) in THF produced amide 12 smoothly
in 87% yield after chromatographic purification.9 It is
noteworthy that the hydrochloride salt of the caprolac-
tam was used, and that the reaction was carried out at
room temperature. These conditions are close to neutral
and compatible with a variety of acid/base sensitive
substrates,10 therefore it provides a very mild alterna-
tive for preparing amides from thioesters. The mecha-
nism of this coupling reaction of a thioester and a
lactam is not clear, but presumably involves the con-
certed actions of sodium 2-ethylhexanoate and its con-
jugated acid.11 Reductive removal (Na/NH3) of benzyl
groups in 12 in the presence of bis(2-methoxyethyl)-
amine12 afforded bengamide E, [h]2D4 +33.6 (c 1.0,
MeOH), lit.1b [h]2D0 +36.9 (c 0.043, MeOH), in 87% yield
7. (a) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O.
Tetrahedron Lett. 1991, 32, 1175–1178; (b) Blakemore, P.
R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998,
26–28; (c) Julia, M.; Badet, B. Bull. Chem. Soc. Fr. 1975,
1363–1366.
1
after purification over silica gel (EtOH/EtOAc). The H
8. Annunziata, R.; Cinquini, M.; Cozzi, F.; Borgia, A. L. J.
Org. Chem. 1992, 57, 6339–6342.
and 13C NMR spectra were in excellent accordance
with those reported for natural bengamide E.1b
9. 12: [h]2D4 −8.3 (c 1.0, MeOH); 1H NMR (CDCl3, 300
MHz) l 7.84 (d, 1H, J=6.2 Hz), 7.18–7.43 (m, 10H), 6.63
(m, 1H), 5.76 (dd, 1H, J=15.6, 6.4 Hz), 5.37 (dd, 1H,
J=15.5, 8.4 Hz), 4.95 (d, 1H, J=10.9 Hz), 4.62 (dd, 2H,
J=11.3, 6.6 Hz), 4.47 (m, 1H), 4.38 (d, 1H, J=11.9 Hz),
4.13 (t, 1H, J=7.8 Hz), 3.80 (s, 2H), 3.73 (d, 1H, J=6.8
Hz), 3.52 (m, 1H), 3.31 (s, 3H), 2.96 (m, 2H), 2.35 (m,
1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.75 (m, 2H), 1.45 (m,
1H), 1.27 (m, 1H), 1.01 (dd, 6H, J=6.7, 4.8 Hz); 13C
NMR (75 MHz, CDCl3) l 175.9, 171.0, 144.0, 139.1,
139.0, 128.8, 128.7, 128.3, 128.1, 127.8, 123.9, 82.6, 81.6,
80.7, 75.5, 72.2, 70.5, 58.7, 52.4, 42.1, 31.5, 31.3, 29.0,
28.3, 22.7.; MS m/z 561 (M+Na)+, 431; HRMS m/z calcd
for C31H43N2O6 (M+H)+ 539.3121; found 539.3117.
10. Liu, W.; Xu, D. D.; Repic, O.; Blacklock, T. J. Tetra-
hedron Lett. 2001, 42, 2439–2441.
In summary, we have achieved a total synthesis of
bengamide E. The side chain was constructed from
D
-tartrate as the chiral building block, with E-olefina-
tion by the Julia protocol and an anti-aldol reaction.
Coupling of the side chain with the caprolactam moiety
was accomplished using sodium 2-ethylhexanoate.
References
1. (a) Quinoa, E.; Adamczeski, M.; Crews, P.; Bakus, G. J.
J. Org. Chem. 1986, 51, 4497–4498; (b) Adamczeski, M.;
Quinoa, E.; Crews, P. J. Am. Chem. Soc. 1989, 111,
647–654; (c) Adamczeski, M.; Quinoa, E.; Crews, P. J.
Org. Chem. 1990, 55, 240–242.
11. (a) Fray, A. H. Tetrahedron: Asymmetry 1998, 9, 2777–
2781 and references cited therein; (b) Melander, C.;
Horne, D. A. J. Org. Chem. 1997, 62, 9295–9297; (c)
Menger, F. M.; Vitale, A. C. J. Am. Chem. Soc. 1973, 95,
4931–4934; (d) Openshaw, H. T.; Whittaker, N. J. Chem.
Soc. (C) 1969, 89–91.
2. Thale, Z.; Kinder, F. R.; Bair, K. W.; Bontempo, J.;
Czuchta, A. M.; Versace, R. W.; Philips, P. E.; Sanders,
M. L.; Wattanasin, S.; Crews, P. J. Org. Chem. 2001, 66,
1733–1741.
3. (a) Chida, N.; Tobe, T.; Ogawa, S. Tetrahedron Lett.
1991, 32, 1063–1066; (b) Broka, C. A.; Ehrler, J. Tetra-
hedron Lett. 1991, 32, 5907–5910; (c) Kishimoto, H.;
Ohrui, H.; Meguro, H. J. Org. Chem. 1992, 57, 5042–
12. Donohoe, T. J.; Guyo, P. M.; Harji, R. R.; Helliwell, M.
Tetrahedron Lett. 1998, 39, 3075–3078.