1671.8(4) Å3, Z = 4, m = 2.598 mm21, Dc = 1.908 Mg m23, Mo-Ka
radiation (l = 0.71073 Å), 3093 reflections collected, 2925 independent
(Rint = 0.0231) Final R1(I > 2s(I)) = 0.0412, wR2 (all data) = 0.1154.
¯
3: M = 860.37, triclinic, space group P1, a = 8.085(2), b = 9.0746(8),
c = 10.606(3) Å, a = 71.981(13), b = 83.635(14), g = 83.845(12)°, V =
733.2(2) Å 3, Z = 1, m = 2.948 mm21, Dc = 1.939 Mg m23, Mo-Ka
radiation (l = 0.71073 Å), 2729 reflections collected, 2530 independent
(Rint = 0.0202) Final R1(I > 2s(I)) = 0.0368, wR2(all data) = 0.0967. The
data collection was perfomed on a Siemens P4 automated four-circle
diffractometer. Data were corrected for absorption. The structures of 2 and
3 were solved by direct methods (SHELX-86) and standard difference
Fourier techniques (SHELX-97).9 All hydrogen atoms attached to carbon
positions were program generated and included in the refinements as a
riding model except those on water molecules which were refined
separately according to electron density difference. All non-hydrogen atoms
were treated anisotropically.
Fig. 2
suppdata/cc/b2/b200658h/
and the other physically adsorbed in the pore. All the water
molecules are interconnected by an extended hydrogen bonding
network, lending structural stability to compound 3. The water
molecules are reversibly desorbed and re-adsorbed in 3. The
TGA data of 2 show the first weight loss at ca. 400–420 °C
(19.7%) corresponding to removal of one chdc ligand per unit
(20.9%) and the second one at above 450 °C. The data for 3
present 7.3% (Calc: 8.3%) loss from 100–180 °C (dehydration
of both coordinate and non-coordinate H2O) and 55.9% (Calc:
53.9%) loss over 450 °C (decomposition of chdc ligand).
We believe that the construction of various dimensionalities
was possible thanks to the variable concentration of chdc
conformational isomers, controlled by the pH and temperature
applied. All three compounds basically contain the thermody-
namically most stable trans-forms (L1 or L0), which probably
have higher concentrations and a greater preference to bind La
ions due to the higher acidity. As pH increases, the cis-form
becomes deprotonated in the equatorial rather than the axial
position due to the higher acidity of equatorial one, which
results in the 2D network of 2. At higher pH ( > 7), all the
carboxylate groups of chdc (L3) are deprotonated and interlock
the 2D La L1 sheets into the 3D structure of 3.
The present work demonstrates that 1D, 2D and 3D
coordination networks were achieved by using chdc ligand with
flexible cis/trans conformations, which involve protonated,
partially and/or fully deprotonated carboxylates, depending on
the pH of the applied solution media. It is noteworthy that the
prepared compounds are the first examples of coordination
polymers constructed using both cis-chdc and trans-chdc in
different molar ratios. The sequential change of ligand con-
formations depending on the reaction conditions implies a
fundamental aspect of the crystallization mechanism of coor-
dination networks.
1 (a) B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629; M. J.
Zaworotko, Chem. Commun., 2001, 1; M. J. Zaworotko, in Crystal
Engineering, The Design and Application of Functional Solids; Eds. K.
R. Seddon and M. J. Zaworotko; Kluwer Academic Publishers,
Dordrecht, 1999, p.383; (b) K. T. Holman, A. M. Pivovar, J. A. Swift and
M. D. Ward, Acc. Chem. Res., 2001, 34, 107; (c) M. Kondo, T. Okubo,
A. Asami, S. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka
and K. Seki, Angew. Chem., Int. Ed., 1999, 38, 140; (d) L. Pan, X. Huang,
J. Li, Y. Wu and N. Zheng, Angew. Chem., Int. Ed., 2000, 39, 527; (e) P.
J. Hagrman, D. Hagrman and J. Zubieta, Angew. Chem., Int. Ed., 1999,
38, 2638; (f) D. Braga, F. Grepioni and G. R. Desiraju, Chem. Rev., 1998,
98, 1375; (g) L. R. MacGillivray, R. H. Groeneman and J. L. Atwood, J.
Am. Chem. Soc., 1998, 120, 2676.
2 (a) H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Nature, 1999,
402, 276; T. M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley and O. M.
Yaghi, J. Am. Chem. Soc., 1999, 121, 1651; T. M. Reineke, M. Eddaoudi,
M. OAKeeffe and O. M. Yaghi, Angew. Chem., Int. Ed., 1999, 38, 2590;
(b) L. Pan, N. Zheng, Y. Wu, S. Han, R. Yang, X. Huang and J. Li, Inorg.
Chem., 2001, 40, 828; (c) Z.-L. Huang, M. Drillon, N. Masciocchi, A.
Sironi, J.-T. Zhao, P. Rabu and P. Panissod, Chem. Mater., 2000, 12,
2805.
3 (a) O. M. Yaghi, H. Li and T. L. Groy, J. Am. Chem. Soc., 1996, 118,
9096; (b) A. Dimos, A. Michaelides and S. Skoulika, Chem. Mater.,
2000, 12, 3256; (c) S. O. H. Gutschke, M. Molinier, A. K. Powell, R. E.
P. Winpenny and P. T. Wood, Chem. Commun., 1996, 823; S. O. H.
Gutschke, D. J. Price, A. K. Powell and P. T. Wood, Angew. Chem., Int.
Ed., 2001, 40, 1920.
4 (a) Y. J. Kim and D.-Y. Jung, Inorg. Chem., 2000, 39, 1470; (b) Y. J.
Kim, E. W. Lee and D.-Y. Jung, Chem. Mater., 2001, 13, 2684; (c) E. W.
Lee, Y. J. Kim and D.-Y. Jung, Inorg. Chem., 2002, 41, 501.
5 (a) C. Livage, C. Egger, M. Nogues and G. Férey, J. Mater. Chem., 1998,
8, 2743; (b) Y. J. Kim and D.-Y. Jung, Bull. Korean Chem. Soc., 1999, 20,
827; (c) C. Livage, C. Egger and G. Férey, Chem. Mater., 2001, 13, 410;
(d) F. Serpaggi and G. Férey, Microporous Mesoporous Mater., 1999, 32,
311.
We thank the KOSEF, Korea, for financial support through
the Electron Spin Science Center at POSTECH.
6 E. L. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison,
Conformational Analysis, John Wiley, 1996. The DG values of e,a-cis-
and a,a-trans-chdcH2 are 1.4 and 2.8 kcal mol21, respectively, compared
with e,e-trans-form.
Notes and references
7 (a) R. Kuhn and A. Wassermann, Helv. Chim. Acta, 1928, 11, 50; (b) Z.
† 2: 31% yield based on lanthanum used; elemental analysis calcd (%) for
LaC16H21O8: C, 39.98; H, 4.42. found: C, 39.62; H, 4.37. 3: 48% yield,
Calcd (%) for La2C24H38O16: C, 33.47; H, 4.46. Found: C, 32.56; H,
4.34.
Welvart, Soc. Chim. 5 serie, 1964, 2203.
8 (a) P. Luger, K. Plieth and G. Ruban, Acta. Cryst., 1972, B28, 706; (b) J.
D. Dunitz and P. Strickler, Helv. Chim. Acta, 1966, 49, 2505.
9 P. McArdle, SHELX-86 and SHELX-97 Users Guide; Crystallography
Center, Chemistry Department, National University of Ireland: Galway,
Ireland, J. Appl. Cryst., 1995, 28, 65.
‡
Crystallographic data: 2: M = 480.24, monoclinic, space group P21/n,
a = 10.699(2), b = 8.335(2), c = 18.8774(13) Å, b = 96.774(9)°, V =
CHEM. COMMUN., 2002, 908–909
909