ORGANIC
LETTERS
2002
Vol. 4, No. 13
2177-2179
Synthesis of the ABC Ring System of
Azaspiracid. 1. Effect of D Ring
Truncation on Bis-spirocyclization†
,‡
Rich G. Carter,* T. Campbell Bourland,§ and David E. Graves§
Department of Chemistry, Oregon State UniWersity, CorVallis, Oregon 97331, and
Department of Chemistry and Biochemistry, UniVersity of Mississippi,
UniVersity, Mississippi 38677
Received April 17, 2002
ABSTRACT
Synthesis of a spirocyclization precursor with a truncated D ring has been accomplished. Subsequent bis-spirocyclization induced the formation
of equal amounts of the natural transoidal 10R,13R bis-spirocycle and its cisoidal 10R,13S epimer under an apparent thermodynamically
controlled process.
A new class of toxins in shellfish, the azaspiracids, has been
recently observed in mussels harvested in the surrounding
waters of Europe (Scheme 1).1 Azaspiracid (1)2 and its related
structures, azaspiracids 2-5 (2-5),3,4 have been shown to
induce serious injury to the digestive tracts, liver, pancreas,
thymus, and spleen in mice. In addition to their significant
biological properties, the azaspiracids represent a daunting
synthetic challenge as the parent structure 1 possesses 20
stereocenters and three separate spirocyclic linkages. For
these reasons, the azaspiracids have garnered significant
recent attention in both the biological1-5 and synthetic
communities.6-8 This paper discloses the successful con-
struction of the C1-C17 portion of azaspiracid including the
crucial C10, C13 transoidal bis-spirocyclic array.
Strategy. The major stumbling block in the synthesis of
the northern portion of azaspiracid has been the effective
(5) Ito, E.; Satake, M.; Ofuji, K.; Kurita, N.; McMahon, T.; James, K.;
Yasumoto, T. Toxicon. 2000, 38, 917.
(6) (a) Carter, R. G.; Weldon, D. J. Org. Lett. 2000, 2, 3913. (b) Carter,
R. G.; Weldon, D. J. Bourland, T. C. 221st National Meeting of the
American Chemical Society, San Diego, April 2001; American Chemical
Society: Washington, DC, 2001; ORGN-479. (c) Carter, R. G.; Graves,
D. E. Tetrahedron Lett. 2001, 42, 6035.
(7) (a) Forsyth, C. J.; Hao, J.; Aiguade, J. Angew. Chem., Int. Ed. 2001,
40, 3662. (b) Nicolaou, K. C.; Pihko, P. M.; Diedrichs, N.; Zou, N., Bernal,
F. Angew. Chem., Int. Ed. 2001, 40, 1262. (c) Dounay, A. B.; Forsyth, C.
J. Org. Lett. 2001, 3, 975. (d) Aiguade, J.; Hao, J.; Forsyth C. J. Org. Lett.
2001, 3, 979. (e) Aiguade, J.; Hao, J.; Forsyth, C. J. Tetrahedron Lett. 2001,
42, 817. (f) Hao, J.; Aiguade, J.; Forsyth, C. J. Tetrahedron Lett. 2001, 42,
821. (g) Buszek, K. R. 221st National Meeting of the American Chemical
Society, San Diego, April 2001; American Chemical Society: Washington,
DC, 2001; ORGN-5701.
(8) Nicolaou and co-workers recently reported an alternate solution to
the C10, C13 bis-spiroketal involving substitution of the C8,9 alkene with a
C9 hydroxyl function. Nicolaou, K. C.; Qian, W.; Bernal, F.; Uesaka, N.;
Pihko, P. M.; Hinrichs, J. Angew. Chem., Int. Ed. 2001, 40, 4068.
† This work was performed at the University of Mississippi. The
corresponding author’s present address is Department of Chemistry, Oregon
State University, Corvallis, OR 97331.
‡ Oregon State University.
§ University of Mississippi.
(1) MacMahon, T.; Silke, J. Harmful Algae News 1996, 14, 2.
(2) Satake, M.; Ofuji, K.; Naoki, H.; James, K. J.; Furey, A.; McMahon,
T.; Silke, J.; Yasumoto, T. J. Am. Chem. Soc. 1998, 120, 9967.
(3) Ofuji, K.; Satake, M.; McMahon, T.; Silke, J.; James, K. J.; Naoki,
H.; Oshima, Y.; Yasumoto, T. Nat. Toxins 1999, 7, 99.
(4) Ofuji, K.; Satake, M.; McMahon, T.; James, K. J.; Naoki, H.; Oshima,
Y.; Yasumoto, T. Biosci. Biotechnol. Biochem. 2001, 65, 740.
10.1021/ol026033w CCC: $22.00 © 2002 American Chemical Society
Published on Web 06/05/2002