concentrated under reduced pressure. The residue was purified
by flash chromatography (EtOAc–hexane 1 : 1 then 2 : 1) to give
the desired compound 10h (103 mg, 64%) as a white solid, Rf
References
1 A. K. Patick and K. E. Potts, Clin. Microbiol. Rev., 1998, 11(4), 614–
627.
2 J. W. Erickson and S. K. Burt, Annu. Rev. Pharmacol. Toxicol., 1996,
36, 545–571.
3 L. Waxman and P. L. Darke, Antiviral. Chem. Chemother., 2000,
11(1), 1–22.
1
0.33 (EtOAc–hexane 2 : 1); mp 130–132 ЊC; H NMR (300
MHz; CDCl3) δ 0.70–0.90 (m, 6 H, 2 × CH3 δ Leu), 1.35 (br s,
11 H, CH3 Boc ϩ CH2 β Leu), 1.50 (br s, 1 H, CH γ Leu), 1.80–
2.40 (m, 2 H, –NCH2CH2C(O)–), 2.65–3.15 (m, 6 H, CH2 β Tyr
ϩ CH2 β Phe ϩ –NCH2CH2C(O)–), 3.60–3.80 (m, 1 H, CH α
Leu), 3.92–4.15 (m, 1 H, CH α Tyr), 4.60–5.40 (m, 3 H, CH α
Phe ϩ CHSPh ϩ OH Tyr), 6.50–7.50 (m, 14 H, ArH ); 13C
NMR (62.9 MHz; CDCl3) δC 21.6, 22.4, 28.4, 37.6, 37.9, 39.8,
41.1, 41.4, 54.3, 54.9, 56.7, 72.3, 77.1, 115.6, 124.9, 125.7, 126.6,
127.9, 128.4, 128.7, 129.3, 132.8, 135.6, 140.2, 154.5, 157.5,
173.9, 174.7, 175.4, 209.5; νmax (KBr)/cmϪ1 1762, 1759, 1755,
1750, 1680; MS (FAB > 0, GT) m/z 717 (M ϩ H)ϩ. Calc. for
C39H48N4O7S: 716.90 g molϪ1. Found: C, 64.98; H, 6.45; N,
7.61. C39H48N4O7S requires C, 65.34; H, 6.75; N, 7.82%.
4 N. Tautz, A. Kaiser and H.-J. Thiel, Virology, 2000, 273(2), 351–363.
5 P. S. Dragovich, T. J. Prins, R. Zhou, S. A. Fuhrman, A. K. Patick,
D. A. Matthews, C. E. Ford, J. W. Meador, R. A. Ferre and
S. T. Worland, J. Med. Chem., 1999, 42(7), 1203–1212.
6 P. S. Dragovich, T. J. Prins, R. Zhou, S. E. Webber, J. T. Marakovits,
S. A. Fuhrman, A. K. Patick, D. A. Matthews, C. A. Lee, C. E. Ford,
B. J. Burke, P. A. Rejto, T. F. Hendrickson, T. Tuntland, E. L. Brown,
J. W. Meador, R. A. Ferre, J. E. V. Harr, M. B. Kosa and
S. T. Worland, J. Med. Chem., 1999, 42(7), 1213–1224.
7 D. A. Matthews, P. S. Dragovich, S. E. Webber, S. A. Fuhrman,
A. K. Patick, L. S. Zalman, T. F. Hendrickson, R. A. Love,
T. J. Prins, J. T. Marakovits, R. Zhou, J. Tikhe, C. E. Ford,
J. W. Meador, R. A. Ferre, E. L. Brown, S. L. Binford,
M. A. Brothers, D. M. DeLisle and S. T. Worland, Proc. Natl. Acad.
Sci. USA, 1999, 96(20), 11000–11007.
8 A. Spaltenstein, M. R. Almond, W. J. Bock, D. G. Cleary,
E. S. Furfine, R. J. Hazen, W. M. Kazmierski, F. G. Salituro,
R. D. Tung and L. L. Wright, Bioorg. Med. Chem. Lett., 2000,
10(11), 1159–1162.
9 F. G. Salituro, C. T. Baker, J. J. Court, D. D. Deininger, E. E. Kim,
B. Q. Li, F. M. Novak, B. G. Rao, S. Pazhanisamy, M. D. Porter,
W. C. Schairer and R. D. Tung, Bioorg. Med. Chem. Lett., 1998,
8(24), 3637–3642.
N-(N-L-Asparagyl-L-phenylalanyl)-2-(phenylthio)pyrrolidin-3-one
trifluoroacetic acid salt 10i
The N-Boc-protected derivative 10g (30 mg, 0.05 mmol)
was dissolved at 0 ЊC in 1 mL of a solution of TFA in CH2Cl2
(v/v 1 : 9). The reaction mixture was stirred at room temper-
ature for 2 hours. The reaction was monitored by TLC
(EtOAc). The solvents were evaporated off under reduced pres-
sure and the excess of TFA was co-evaporated with CH2Cl2.
The desired TFA salt was isolated as a brown solid (31 mg,
10 J. L. Kraus, M. Bouygues, J. Courcambeck and J. C. Chermann,
Bioorg. Med. Chem. Lett., 2000, 10(17), 2023–2026.
1
quantitative), H NMR (250 MHz; CD3OD) δ 1.80–2.40 (br s,
11 Y. M. Choi-Sledeski, D. G. McGarry, D. M. Green, H. J. Mason,
M. R. Becker, R. S. Davis, W. R. Ewing, W. P. Dankulich,
V. E. Manetta, R. L. Morris, A. P. Spada, D. L. Cheney, K. D.
Brown, D. J. Colussi, V. Chu, C. L. Heran, S. R. Morgan, R. G.
Bentley, R. J. Leadley, S. Maignan, J. P. Guilloteau, C. T. Dunwiddie
and H. W. Pauls, J. Med. Chem., 1999, 42(18), 3572–3587.
12 K. A. Scheidt, W. R. Roush, J. H. McKerrow, P. M. Selzer,
E. Hansell and P. J. Rosenthal, Bioorg. Med. Chem., 1998, 6(12),
2477–2494.
13 N. P. Peet, H. O. Kim, A. L. Marquart, M. R. Angelastro,
T. R. Nieduzak, J. N. White, D. Friedrich, G. A. Flynn, M. E.
Webster, R. J. Vaz, M. D. Linnik, J. R. Koehl, S. Mehdi, P. Bey,
B. Emary and K. K. Hwang, Bioorg. Med. Chem. Lett., 1999, 9(16),
2365–2370.
2 H, –NCH2CH2C(O)–), 2.70–3.20 (m, 6 H, –NCH2CH2C(O)–
ϩ CH2 β Phe ϩ CH2 β Asn), 4.00–4.20 (m, 1 H, CH α Asn),
4.90–5.30 (m, 2 H, CH α Phe ϩ CHSPh), 7.05–7.55 (m, 10 H,
ArH ); 13C NMR (62.9 MHz; CD3OD) δC 37.5, 39.7, 41.0, 41.2,
53.9, 57.5, 68.3, 123.9, 125.4, 125.7, 126.6, 128.2, 128.6, 132.3,
138.5, 174.3, 175.4, 177.2, 208.0; MS (FAB > 0, GT) m/z 455
(M ϩ H)ϩ. Calc. for C23H26N4O4S: 454.53 g molϪ1. Calc. for
C23H26N4O4SؒCF3COOH: 568.56 g molϪ1
.
N-{N-[N-(L-Leucyl-L-tyrosyl)-L-phenylalanyl]-2-(phenylthio)-
pyrrolidin-3-one trifluoroacetic acid salt 10j
14 V. R. Atigadda, W. J. Brouillette, F. Duarte, S. M. Ali, Y. S. Babu,
S. Bantia, P. Chand, N. Chu, J. A. Montgomery, D. A. Walsh,
E. A. Sudbeck, J. Finley, M. Luo, G. M. Air and G. W. Laver,
J. Med. Chem., 1999, 42(13), 2332–2343.
15 W. D. Kingsbury, J. C. Boehm, D. Perry and C. Gilvarg, Proc. Natl.
Acad. Sci. USA, 1984, 81(14), 4573–4576; W. D. Kingsbury,
J. C. Boehm, R. J. Mehta, S. F. Grappel and C. Gilvarg, J. Med.
Chem., 1984, 27(11), 1447–1451.
16 B. Castro, J. R. Dormoy, G. Evin and C. Selve, Tetrahedron Lett.,
1975, 16(14), 1219–1222.
17 K. Omura, A. K. Sharma and D. Swern, J. Org. Chem., 1976, 41(6),
957–962.
18 H. J. Shine, M. Rahman, H. Seeger and G.-S. Wu, J. Org. Chem.,
1967, 32(6), 1901–1908.
19 K. Chibale and S. Warren, Tetrahedron Lett., 1994, 35(2), 3991–
3994; Y. K. Yee and A. G. Schultz, J. Org. Chem., 1979, 44(5), 719–
724; R. A. Olofson and C. M. Dougherty, J. Am. Chem. Soc., 1973,
95(2), 582–584; K. Hiroi, H. Miura, K. Kotsuji and S. Sato, Chem.
Lett., 1981, 559–562.
The title TFA salt 10j was prepared according to a similar pro-
cedure as described as previously, from the N-Boc-protected
derivative 10h (42 mg, 0.06 mmol). After evaporation and
co-evaporation of the solvent and excess of TFA, the salt was
1
isolated as a black solid (40 mg, 93%), H NMR (300 MHz;
DMSO-d6) δ 0.54–0.74 (m, 6 H, 2 × CH3 δ Leu), 0.95–1.05
(m, 3 H, CH2 β Leu ϩ CH γ Leu), 2.00–2.50 (m, 2 H,
–NCH2CH2C(O)–), 2.70–3.10 (m, 6 H, CH2 β Tyr ϩ CH2
β Phe ϩ –NCH2CH2C(O)–), 3.40–3.80 (m, 2 H, CH α Tyr ϩ
CH α Leu), 4.30–4.70 (m, 2 H, CH α Phe ϩ CHSPh), 6.25–7.50
(m, 14 H, ArH ); 13C NMR (62.9 MHz; DMSO-d6) δC 22.5,
23.9, 37.9, 38.3, 38.4, 42.4, 43.9, 54.8, 55.7, 57.7, 69.3, 116.5,
123.3, 126.6, 127.5, 127.9, 128.4, 128.6, 129.1, 131.2, 136.5,
139.3, 155.4, 173.9, 174.7, 174.8, 206.3; MS (FAB > 0, GT) m/z
617 (M ϩ H)ϩ. Calc. for C34H40N4O5S: 616.75 g molϪ1. Calc. for
C34H40N4O5SؒCF3COOH: m/z 730.78 g molϪ1
.
20 D. Seebach, Angew. Chem., Int. Ed. Engl., 1969, 8(9), 639–649.
21 M. Bodanszky and A. Bodanszky, in The Practice of Peptide
Synthesis, 2nd edn., Springer–Verlag, 1994, pp. 119–120, and
references therein; M. Bodanszky and J. Martinez, in The Peptides,
ed. E. Gross and J. Meienhofer, 1983, pp. 152–156.
Acknowledgements
We thank Mr Frédéric Bihel for his helpful comments. We
are indebted to Miss Delphine Palet and Dr Pascale Galéa
(Trophos, Faculté des Sciences de Luminy, Marseille, France)
for their biological technical assistance.
22 D. A. Evans and J. A. Ellman, J. Am. Chem. Soc., 1989, 111(3),
1063–1072.
23 G. L. Ellman, Arch. Biochem. Biophys., 1959, 82(1), 70–77;
G. Ellman and H. Lysko, Anal. Biochem., 1979, 93(1), 98–102.
J. Chem. Soc., Perkin Trans. 1, 2002, 1181–1189
1189