J ones et al.
SCHEME 1. BLYP An a lysis of Cycloa r om a tiza tion
Ba r r ier for Oxa -En ed iyn e 4
accounting for the typically high biological activity of
most cyclic enediynes. Since the Bergman cycloaromati-
zation reaction is the key triggering event in the biologi-
cal cascade, a great deal of effort has been spent studying
the process and devising efficient means to control the
process.1 The relief of strain experienced when the C-10
ring undergoes cyclization has been examined and de-
termined to play a dominant role and has been exploited
in the form of triggering devices.6 Additionally, a rule of
thumb has been adopted by correlating the intra-acety-
lenic distance in the enediyne (the so-called “c-d”
distance) with experimentally determined half-lives.7
Other contributing factors involve the electronics of the
process, and several reports point to subtle effects
observed with substituted enediynes.8 For our own stud-
ies, we wished to examine the effects of heteroatoms in
the process, since (i) they may impart subtle strain and/
or electronic contributions, (ii) the effects could then be
modulated further by appropriate substitution R to the
heteroatom, and (iii) synthesis of the agents could be
expected to be straightforward, invoking disconnections
adjacent to the heteroatom.9,10
TABLE 1. Com p a r ison of In tr a -Acetylen ic Dista n ce a n d
En th a lp ic Ba r r ier s to Cycloa r om a tiza tion a
r1,6
-
∆Hrel
-
t
1/2(obsd)b
(h)
entry substrate
(diyne)
r1,6(ts) (diyne) ∆Hrel(ts)
1
2
3
4
1, X ) CH2 3.413
1.973
0.0
0.0
0.0
0.0
23.7
22.4
21.3
16.0
18
17
15
1
4
3.365
3.346
3.170
1.985
1.990
2.002
20
28
a
All enthalpies in kcal/mol based on BLYP/6-311+G**//BLYP/
6-31-G* electronic energies and BLYP/6-31G* rovibrational cor-
rections. 37 °C, 0.1 M 1,4-cyclohexadiene.
b
For an initial test case, we elected to study oxa-
enediyne 4 and its expected conversion to diyl 6 through
transition state 5. Prior to embarking on synthetic
studies, we probed the cyclization barrier using compu-
tational analyses and examined the intra-acetylenic “1-
6” distance in the ground state and transition state
(Scheme 1).11The results indicated a shortening of the
1-6 distance for 4 and a consequent earlier transition
state (longer 1-6 distance) and decreased enthalpy of
activation relative to that of the carbocyclic parent
enediyne 1, X ) CH2 (Table 1). The structural differences
between 4 and 1, X ) CH2, are due to the shorter CO
versus CC bond distances. One could expect the ∆H#
difference to translate to an experimental half-life of less
than the 18 h/37 °C reported for 1, X ) CH2,12 and
accordingly, 4 became a synthesis target.
Initially, the synthesis of 4 was investigated using
popular Pd-mediated coupling chemistry, and two inde-
pendent routes were examined, as shown in Scheme 2.
Following formation of the unsymmetrical dialkynyl
ether 7, we had hoped to effect direct conversion to 4 via
in situ tandem vinylation. Unfortunately, this coupling
gives rise to a mixture of products 8/9, and even under
ideal conditions (stoichiometry, solvent, addition rates),
not even a trace of 4 is formed. In an effort to effect
closure in a stepwise manner, 7 was converted to masked
alkyne 10, and monovinylation was effected, followed by
deprotection to give substrate 11. Again, under a variety
of different conditions, direct conversion to 4 could not
be effected; however, over extended periods, polymeric
materials were recovered which may have resulted from
cyclization and in situ cycloaromatization. This suggested
that a Pd-mediated route to 4 may not be desirable, and
we sought a more rapid means to effect closure. Remedy
was found in the form of a Williamson ether synthesis
(Scheme 3). Chlorovinylation of 12 to give 13 was
followed by propargylation/deprotection to give 14. Bro-
mination then gave 15 in good yield and was followed by
mild unmasking to give bromo alcohol 16. Exposure to
base and tetrabutylammonium sulfate gave 4 directly;
however, because of the predicted thermal instability of
4, we elected to protect the enediyne as its cobalt carbonyl
(5) Zein, N.; Solomon, W.; Cassazza, A. M.; Kadow, J . F.; Krishnan,
B. S.; Tun, M. M.; Vyas, D. M.; Doyle, T. W. Bioorg. Med. Chem. Lett.
1993, 3, 1351. Wittman, M. D.; Kadow, J . F.; Langley, D. R.; Vyas, D.
M.; Rose, W. C.; Solomon, W.; Zein, N. Bioorg. Med. Chem. Lett. 1995,
5, 1049. J ones, G. B.; Wright, J .; Plourde, G.; Purohit, A.; Wyatt, J .;
Hynd, G.; Fouad, F. J . Am. Chem. Soc. 2000, 122, 9872. J ones, G. B.;
Plourde, G. W.; Wright, J . M. Org. Lett. 2000, 2, 811. J ones, G. B.;
Wright, J . M.; Hynd, G.; Wyatt, J . K.; Yancisin, M.; Brown, M. A. Org.
Lett. 2000, 2, 1863. J ones, G. B.; Hynd, G.; Wright, J . M.; Purohit, A.;
Plourde, G. W., II; Huber, R. S.; Mathews, J . E.; Li, A.; Kilgore, M.
W.; Bubley, G. J .; Yancisin, M.; Brown, M. J . Org. Chem. 2001, 66,
3688.
(6) Magnus, P.; Fortt, S.; Pitterna, T.; Snyder, J . P. J . Am. Chem.
Soc. 1990, 112, 4986. Snyder, J . P. J . Am. Chem. Soc. 1990, 112, 5367.
Nicolaou, K. C.; Sorensen, E. J .; Discordia, R.; Hwang, C. K.; Minto,
R. E.; Bharucha, K. N.; Bergman, R. G. Angew. Chem., Intl. Ed. Engl.
1992, 31, 1044. Haseltine, J . N.; Cabal, M. P.; Mantlo, N. B.; Iwasawa,
N.; Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J .; Schulte, G.
K. J . Am. Chem. Soc. 1991, 113, 3850. Semmelhack, M. F.; Gallagher,
J . J .; Minami, T.; Date, T. J . Am. Chem. Soc. 1993, 115, 11618. Myers,
A. G.; Dragovich, P. S. J . Am. Chem. Soc. 1992, 114, 5859. Takahashi,
T.; Tanaka, H.; Matsuda, A.; Doi, T.; Yamada, H.; Matsumoto, T.;
Sasaki, D.; Sugiura, Y. Bioorg. Med. Chem. Lett. 1998, 8, 3303.
Takahashi, T.; Tanaka, H.; Matsuda, A.; Doi, T.; Yamada, H. Bioorg.
Med. Chem. Lett. 1998, 8, 3299. Nicolaou, K. C.; Dai, W. M.; Tsay, S.
C.; Estevez, V. A.; Wrasidlo, W. Science 1992, 256, 1172. Wender, P.
A.; Zercher, C. K.; Beckham, S.; Haubold, E.-M. Org. Chem. 1993, 58,
5867. Hay, M. P.; Wilson, W. R.; Denny, W. A. Bioorg. Med. Chem.
Lett. 1999, 9, 3417. Hay, M. P.; Wilson, W. R.; Denny, W. A. Bioorg.
Med. Chem. Lett. 1995, 5, 2829. Denny, W. A.; Wilson, W. R. J . Pharm.
Pharmacol. 1998, 50, 387.
(7) Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai,
W.-M. J . Am. Chem. Soc. 1992, 114, 7360.
(8) Nicolaou, K. C.; Smith, A. L.; Wendeborn, S. V.; Hwang, C. K.
J . Am. Chem. Soc. 1991, 113, 3106. Maier, M. E.; Greiner, B. Liebigs
Ann. Chem. 1992, 855. Choy, N.; Blanco, B.; Wen, J .; Krishan, A.;
Russell, K. C. Org. Lett. 2000, 2, 3761. David, W. M.; Kumar, D.;
Kerwin, S. M. Bioorg. Med. Chem. Lett. 2000, 10, 2509. Basak, A.;
Bdour, H. M.; Shain, J . C.; Mandal, S.; Rudra, K. R.; Nag, S. Bioorg.
Med. Chem. Lett. 2000, 10, 1321. J ones, G. B.; Plourde, G. W. Org.
Lett. 2000, 2, 1757. Clark, A. E.; Davidson, E. R.; Zaleski, J . M. J .
Am. Chem. Soc. 2001, 123, 2650. Funk, R. L.; Young, E. R. R.; Williams,
R. M.; Flanagan, M. F.; Cecil, T. L. J . Am. Chem. Soc. 1996, 118, 3291.
Turro, N. J .; Evenzahav, A.; Nicolaou, K. C. Tetrahedron Lett. 1994,
35, 8089.
(9) For communication describing synthesis of 4 and 20 and bioassay
of 20, see: J ones, G. B.; Kilgore, M. W.; Pollenz, R. S.; Li, A.; Mathews,
J . E.; Wright, J . M.; Huber, R. S.; Tate, P. L.; Price, T. L.; Sticca, R. P.
Bioorg. Med. Chem. Lett. 1996, 6, 1971.
(10) Related heterocyclic enediynes: Sakai, Y.; Nishiwaki, E.; Shi-
shido, K.; Shibuya, M.; Kido, M. Tetrahedron Lett. 1991, 32, 4363.
Basak, A.; Khamrai, U. K. Tetrahedron Lett. 1996, 37, 2475. Basak,
A.; Khamrai, U. K.; Mallik, U. J . Chem. Soc., Chem. Commun. 1996,
749. Singh, R.; J ust, G. Tetrahedron Lett. 1990, 31, 185. Shain, J . C.;
Khamrai, U. K.; Basak, A.; Tetrahedron Lett. 1997, 38, 6067.
(11) J ones, G. B.; Warner, P. M. J . Am. Chem. Soc. 2001, 123, 2134.
(12) J ones, G. B.; Wright, J . M.; Plourde, G. W., II; Hynd, G.; Huber,
R. S.; Mathews, J . E. J . Am. Chem. Soc. 2000, 122, 1937.
5728 J . Org. Chem., Vol. 67, No. 16, 2002