S. Bhattacharya, M. Subramanian / Tetrahedron Letters 43 (2002) 4203–4206
4205
Scheme 2. Reagents, conditions and yields: (a) i. RCO2H (1 equiv.) Et3N, −20°C, 1 h; add ClCO2Et–THF, stir at −20°C, 2 h, then
at rt, 1 h, ii cool to −20°C, add a solution of RCO2H (1 equiv.)/Et3N in THF −20°C, 1 h; stir overnight at rt, (isolated yields:
90–95%); (b) DMAP, GPC·CdCl2, CHCl3, stir at rt, 48 h (isolated yields: 72, 55, 63% for 1–3, respectively).
numbered intermediates and final products were char-
3. (a) Li, R.; Pascal, R. A. J. Org. Chem. 1993, 58, 1952; (b)
Ladika, M.; Fisk, T. E.; Wu, W. W.; Jons, S. D. J. Am.
Chem. Soc. 1994, 116, 12093; (c) Menger, F. M.; Chen,
X. Y. Tetrahedron Lett. 1996, 37, 323; (d) Patwardhan,
A. P.; Thompson, D. H. Org. Lett. 1999, 1, 241; (e)
Starck, J.-P.; Nakatani, Y.; Ourisson, G. Tetrahedron
1995, 51, 2629; (f) Ru¨rup, J.; Mannova, M.; Brezesinski,
G.; Schmid, R. D. Chem. Phys. Lipids 1994, 70, 187; (g)
Sisiri, W.; Lee, Y.-S.; O’Brien, D. F. Tetrahedron Lett.
1995, 36, 8945; (h) Menger, F. M.; Wood, M. G.; Zhou,
Q. Z.; Hopkins, H. P.; Fumero, J. J. Am. Chem. Soc.
1988, 110, 6804; (i) Morr, M.; Fortkamp, J.; Ru¨he, S.
Angew Chem., Int. Ed. Engl. 1997, 36, 2460.
4. (a) Lu, Q.; Ubillas, R. P.; Zhou, Y.; Dubenko, L. G.;
Dener, J. M.; Litvak, J.; Phuan, P.-W.; Flores, M.; Ye,
Z.; Gerber, E. Y.; Truong, T.; Bierer, D. E. J. Nat. Prod.
1999, 62, 824; (b) Hilgard, P.; Klenner, T.; Stekar, J.;
Unger, C. Cancer Chemother. Pharmacol. 1993, 32, 90; (c)
Wissner, A.; Schaub, R. E.; Sum, P. E.; Kohler, C. A.;
Goldstein, B. M. J. Med. Chem. 1986, 29, 328; (d) Shen,
T. Y. J. Med. Chem. 1981, 24, 1.
1
acterized by IR, H, 13C NMR spectroscopy and ele-
mental analysis.10
Brief sonic dispersal, or vortex mixing (10 min) above
50°C, of the thin film prepared from each of the above
phospholipid in HEPES (5 mM) buffer containing 1
mM EDTA at pH 7.4 afforded stable, translucent
aqueous suspensions. The existence of multi-walled
vesicular microstructures (MLVs) was evident from
negative stain transmission electron microscopy studies
(not shown) with each of these samples. Differential
scanning calorimetric examination of these membranes
spanning 5–90°C did not show the presence of any peak
due to main-chain melting transition. Inclusion of any
of these lipids with dipalmitoyl phosphatidylcholine
(DPPC), however, reduced the main chain melting tran-
sition of the DPPC by several degrees depending on the
mol% of the synthetic phospholipids incorporated.
Taken together it is evident that these newly synthe-
sized phospholipids retain a fluid like melted state
(liquid-crystalline like state) at ambient temperatures in
their membranes.
5. (a) Martin, S. F.; Josey, J. A.; Wong, Y.-L.; Dean, D. W.
J. Org. Chem. 1994, 59, 4805; (b) Erukulla, R. K.; Byun,
H. S.; Bittman, R. Tetrahedron Lett. 1994, 35, 5783; (c)
Garigapati, V. R.; Roberts, M. F. Tetrahedron Lett. 1993,
34, 769; (d) Kazi, A. B.; Hajdu, J. Tetrahedron Lett. 1992,
33, 2291; (e) Herbert, N.; Beck, A.; Lennox, R. B.; Just,
G. J. Org. Chem. 1992, 57, 1777.
In summary, a convenient, general and adaptable
method has been developed for the synthesis of three
novel phospholipid analogues bearing acyl chains with
unsaturations, which form the first examples of this
class of compounds that are oxidatively stable. Such
synthetic phospholipids will become valuable tools for
both standard and innovative experiments in the fields
of membrane receptor research, enzymology and
bioseparation techniques. Work is now underway in
our laboratory toward the protein reconstitution stud-
ies with these stable phospholipid membranes.
6. Bhattacharya, S.; Marti, T.; Otto, H.; Heyn, M. P.;
Khorana, H. G. J. Biol. Chem. 1992, 267, 6757.
7. Gilbertson, S. M.; Porter, N. A. J. Am. Chem. Soc. 2000,
122, 4032.
8. For representative examples of other lipid design, see: (a)
Bhattacharya, S.; De, S. Chem. Eur. J. 1999, 5, 2335; (b)
Bhattacharya, S.; Dileep, P. V. Tetrahedron Lett. 1999,
40, 8167; (c) Bhattacharya S.; De, S.; Subramanian, M. J.
Org. Chem. 1998, 63, 7640; (d) Bhattacharya, S.; Ghosh,
S.; Easwaran, K. R. K. J. Org. Chem. 1998, 63, 9232; (e)
Bhattacharya, S.; Acharya, S. N. G. Langmuir 2000, 16,
87; (f) Bhattacharya, S.; De, S. Chem. Commun. 1995,
651.
Acknowledgements
This work was supported by the Swarnajayanti Fellow-
ship Grant of the Department of Science and Technol-
ogy, Government of India.
9. For details, see: Lipid Biochem. Prep.; Bergelson, L. D.,
Ed.; Elsevier: Amsterdam, 1980; Chapter II.3, p. 125.
10. All the intermediates and final compounds were charac-
terized by IR, 1H, 13C NMR and elemental analysis.
1
References
Selected spectral data for compounds 1–3: (1) H NMR
(400 MHz, CDCl3) l (ppm) 0.88 (t, 6H, 2×-CH3
(br m, 16H, 2×(-CH2)4), 1.58 (br m, 12H, 2×(-CH2 3
2.29 (m, 4H, 2×-OC(O)CH2) 2.54 (m, 8H, 2×(-CH2
C6H4CH2 ) ), 3.74 (t, 2H,
-) 3.32 (s, 9H, 3×N+(CH3 3
-CH2 OC(O)), 4.11 (m,
N+(CH3)3), 3.92 (m, 2H, -CH-CH2
6
), 1.29
1. See: Voet, D.; Voet, J. G. Biochemistry, 2nd ed.; Wiley:
New York, 1995; p. 280.
2. For reviews, see: Phospholipid Handbook; Cevc, G., Ed.;
Marcel Dekker: New York, 1993.
6
6
) ),
6 -
6
6
6
6
6