256
D. P. Walker, B. A. Acker, E. J. Jacobsen and D. G. Wishka
Vol 45
1
1233, 1173, 1097, 1040 cm-1; H NMR (400 MHz, CDCl3) ꢀ
7.37 (m, 5H), 5.10-4.71 (m, 3H), 4.25 (m, 1H), 4.17-4.10 (m,
1H), 3.96 (m, 1H), 2.24 (m, 1H), 1.65 (m, 6H), 1.48 (s, 9H),
1.41 (m, 1H); low resolution MS (EI) m/e (rel. intensity): 360
(M+, 8), 260 (99), 183 (31), 127 (82), 92 (28), 91(86), 86
(61), 84 (77), 83 (87), 82 (80), 57 (57). Anal. Calcd for
C20H28N2O4: C, 66.64; H, 7.83; N, 7.77, Found: C, 66.29; H,
7.81; N, 8.09.
Acknowledgement. The authors thank Mark Wolfe and Dr.
Vince Groppi for generating ꢁ7-5HT3 functional data, Luz
Cortes-Burgos and Dr. Erik Wong for generating ꢁ7 nAChR
binding data, Randy Jensen for 1H NOE studies, Shahidur
Rahman for synthetic support and the Kalamazoo SAM-Chem
group for analytical data and chromatography support.
REFERENCES AND NOTES
exo-N-(8-Azabicyclo[3.2.1]oct-6-yl)furo[2,3-c]pyridine-
5-carboxamide•dihydrochloride [(±)-17]. Carbamate (±)-22
(812 mg, 2.25 mmol) was combined with 80 mg of 10%
palladium on activated carbon in 25 mL of ethyl alcohol in a
250 mL Parr shaker flask. The mixture was hydrogenated at
50 psi for 2h at room temperature. The catalyst was removed
by filtration and the filtrate was concentrated in vacuo to
provide a pale oil. The crude product was purified by flash
chromatography on silica gel. Elution with methylene
chloride-methanol-ammonium hydroxide (93:6:1) gave 508
mg (99%) of exo-6-amino-8-tert-butoxycarbonyl-8-aza-
bicyclo[3.2.1]octane as a pale oil: 1H NMR (400 MHz,
CDCl3) ꢀ 4.76 (m, 1H), 4.25 (m, 1H), 3.77 (m, 1H), 3.36 (m,
1H), 2.15 (m, 1H), 1.58 (m, 7H), 1.48 (s, 9H), 1.37 (m, 1H);
low resolution MS (API) m/e 227 [M+H].
[1] Bromidge, S.M.; Brown, F.; Cassidy, F.; Clark, M.S.; Dabbs,
S.; Hadley, M.S.; Hawkins, J.; Loudon, J.M.; Naylor, C.B.; Orlek, B.S.;
Riley, G.J. J. Med. Chem. 1997, 40, 4265.
[2] Coe, J.W.; Brooks, P.R.; Vetelino, M.G.; Wirtz, M.C.;
Arnold, E.P.; Huang, J.; Sands, S.B.; Davis, T.I.; Lebel, L.A.; Fox, C.B.;
Shrikhande, A.; Heym, J.H.; Schaeffer, E.; Rollema, H.; Lu, Y.;
Mansbach, R.S.; Chambers, L.K.; Rovetti, C.C.; Schulz, D.W.; Tingley,
F.D.; O’Neill, B.T. J. Med. Chem. 2005, 48, 3474.
[3] Bermudez, J.; Fake, C.S.; Joiner, G.F.; Joiner, K.A.; King,
F.D.; Miner, W.D.; Sanger, G.J. J. Med. Chem. 1990, 33, 1924.
[4] Sorbera, L.A.; Castaner, J. Drugs Future 2000, 25, 558.
[5] Gaster, L.M.; King, F.D. Med. Res. Rev. 1997, 17, 163.
[6] Jaen, J.C.; Davis, R.E. In Annu. Rep. Med. Chem., Bristol,
J.A. Ed, Academic Press, San Diego, 1994, Vol 29, pp. 23-32.
[7] Schmitt, J.D.; Bencherif, M In Annu. Rep. Med. Chem.,
Doherty, A.M. Ed, Academic Press, San Diego, 2000, Vol 35, pp. 41-51.
[8] [a] Bodnar, A.L.; Cortes-Burgos, L.A.; Cook, K.K.; Dinh,
D.M.; Groppi, V.E.; Hajos, M. Higdon, N.R.; Hoffmann, W.E.; Hurst,
R.S.; Myers, J.K.; Rogers, B.N.; Wall, T.M.; Wolfe, M.L. Wong, E.H. J.
Med. Chem. 2005, 48, 905; [b] Wishka, D.G.; Walker, D.P.; Yates,
K.M.; Reitz, S.C.; Jia, S.; Myers, J.K.; Olson, K.L.; Jacobsen, E.J.;
Wolfe, M.L.; Groppi, V.E.; Hanchar, A.J.; Thornburgh, B.A.; Cortes-
Burgos, L.A.; Wong, E.H.; Staton, B.A.; Raub, T.J.; Higdon, N.R.; Wall,
T.M.; Hurst, R.S.; Walters, R.R.; Hoffman, W.E.; Hajos, M.; Franklin,
S.; Carey, G.; Gold, L.H.; Cook, K.K.; Sands, S.B.; Zhao, S.X.; Soglia,
J.R.; Kalgutkar, A.S.; Arneric, S.P.; Rogers, B.N. J. Med. Chem. 2006,
49, 4425; [c] Walker, D.P.; Wishka, D.G.; Piotrowski, D.W.; Jia, S.;
Reitz, S.C.; Yates, K.M.; Myers, J.K.; Vetman, T.N.; Margolis, B.J.;
Jacobsen, E.J.; Acker, B.A.; Groppi, V.E.; Wolfe, M.L.; Thornburgh,
B.A.; Tinholt, P.M.; Cortes-Burgos, L.A.; Walters, R.R.; Hester, M.R.;
Seest, E.P.; Dolak, L.A.; Han, F.; Olson, B.A.; Fitzgerald, L.; Staton,
B.A.; Raub, T.J.; Hajos, M.; Hoffmann, W.E.; Li, K.S.; Higdon, N.R.;
Wall, T.M.; Hurst, R.S.; Wong, H.F.; Rogers, B.N. Bioorg. Med. Chem.
2006, 14, 8219.
To a stirred solution of the above oil (508 mg, 2.25 mmol),
furo[2,3-c]pyridine-5-carboxylic acid [8b] (474 mg, 2.37
mmol) and diisopropylethylamine (1.12 mL, 9.02 mmol) in
N,N-dimethylformamide (6 mL) under nitrogen atmosphere
was added HATU (890 mg, 2.37 mmol). The mixture was
stirred for 48 h at room temperature. The volatiles were
removed in vacuo, and the remaining residue was partitioned
between chloroform (25 mL) and brine-ammonium hydroxide
(25 mL, 1:1). The aqueous layer was back-extracted with 25
mL of chloroform, and the combined organic layer was dried
over anhydrous K2CO3, filtered and concentrated in vacuo.
The crude product was purified by flash chromatography on
silica gel. Elution with hexanes-ethyl acetate (1:1) gave 670
mg (80%) of tert-butyl exo-6-(furo[2,3-c]pyridine-5-yl-
carbonyl)amino-8-azabicyclo[3.2.1]octane-8-carboxylate as a
1
white solid: H NMR (400 MHz, DMSO-d6 ) ꢀ 8.98 (s, 1H),
8.46 (br s, 1H), 8.40 (s, 1H), 8.35 (d, 1H, J = 2 Hz), 7.22 (d,
1H, J = 2 Hz), 4.31 (m, 1H), 4.18 (m, 1H), 3.91 (m, 1H), 2.18
(m, 2H), 1.61 (m, 6H), 1.37 (m, 9H).
[9] Orlek, B.S.; Blaney, F.E.; Brown, F.; Clark, M.S.; Hadley,
M.S.; Hatcher, J.; Riley, G.J.; Rosenberg, H.E.; Wadsworth, H.J.;
Wyman, P. J. Med. Chem. 1991, 34, 2726.
To the above solid (497 mg, 1.39 mmol) was added
methanolic hydrogen chloride (5 mL of a 3.0 N solution). The
solution was stirred 1 h at 60 °C, which resulted in a white
precipitate. The mixture was cooled to room temperature and
diluted with ether (2 mL). The mixture was further cooled to 0
°C. The white precipitate was collected by filtration and washed
with ether. The precipitate was dried in vacuo to afford 455 mg
(95%) of (±)-17: mp 200-202 °C; IR (diffuse reflectance) 3029,
3022, 2987, 2943, 2924, 2895, 2462, 2351, 2339, 2288, 2224,
1668, 1635, 1601, 1339 cm-1; 1H NMR (400 MHz, D2O) ꢀ 10.01
(m, 1H), 8.49 (s, 1H), 8.26 (m, 1H), 7.22 (m, 1H), 4.44 (dd, 1H,
J = 9.2, 4.5), 4.22 (d, 1H, J = 7.2 Hz), 4.04 (m, 1H), 2.53 (dd,
1H, J = 14.7, 9.2 Hz), 2.25 (m, 1H), 1.88-1.75 (m, 3H), 1.68-
1.64 (m, 3H); low resolution MS (EI) m/e (rel. intensity): 271
(M+,23), 189 (99), 146 (81), 119 (54), 118 (85), 83 (91), 82
(74), 80 (42), 68 (66), 63 (41), 55 (33); high resolution MS (ESI)
calcd for C15H18N3O2 [M+H] m/e 272.1399, found 272.1399. %
Water (KF titration): 5.34. Anal. Calcd for C15H19Cl2N3O2•
5.34% H2O: C, 49.54; H, 5.86; N, 11.55. Found: C, 49.53; H,
6.00; N, 11.41.
[10] Thill, B.P.; Aaron, H.S. J. Org. Chem. 1968, 33, 4376.
[11] Cf: [a] Lewin, A.H.; Sun, G.; Fudala, L.; Navarro, H.; Zhou,
L.-M.; Popik, P.; Faynsteyn, A.; Skolnick, P. J. Med. Chem. 1998, 41,
988; [b] Maskill, H.; Wilson, A.A. J. Chem. Soc., Perkin Trans. 2 1984,
1369.
[12] The corresponding racemic endo-chlorobenzamide of (±)-1
was not prepared. However, the corresponding endo-chlorobenzamide of
(+)-8, prepared via treatment of ketone (+)-7 (Scheme 2) with
hydroxylamine, followed by subsequent hydrogenation [H2, PtO2,
AcOH, 45 psi, 17 h, 99%; endo:exo, 6:1] and amide coupling [HATU,
i-Pr2NEt, 4-chlorobenzoic acid, DMF, 17 h, 50%], shows significantly
diminished activity [ꢁ7-5HT3 EC50 = 28 μM] compared to the exo-
isomer.
[13] The absolute configuration of amide (-)-1 was
unambiguously established via single crystal X-ray crystallography (data
not shown).
[14] For the preparation of (-)-4, see: [a] Arvanitis, E.; Motevalli,
M.; Wyatt, P.B. Tetrahedron Lett. 1996, 4277. For the preparation of
(+)-4, see: [b] Culbertson, T.P.; Domagala, J.M.; Nichols, J.B.; Priebe,
S.; Skeean, R.W. J. Med. Chem. 1987, 30, 1711.
[15] Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1996, 52,