10.1002/anie.201904931
Angewandte Chemie International Edition
RESEARCH ARTICLE
[2]
a) W. Liu, F. Lau, K. Liu, H. B. Wood, G. Zhou, Y. Chen, Y. Li, T. E.
Akiyama, G. Castriota, M. Einstein, C. Wang, M. E. McCann, T. W.
Doebber, M. Wu, C. H. Chang, L. McNamara, B. McKeever, R. T. Mosley,
J. P. Berger, P. T. Meinke, J. Med. Chem. 2011, 54, 8541–8554. b) A.-
M. Monforte, P. Logoteta, S. Ferro, L. D. Luca, N. Iraci, G. Maga, E. D.
Clercq, C. Pannecouque, A. Chimirri, Bioorg. Med. Chem. 2009, 17,
5962–5967.
the occurrence of a radical cyclization cascade leading to the
formation of the bicyclic scaffold of the benzoheterocycle product,
which was illustrated by the proposed mechanistic pathway in
Scheme 5b. First, the arylamine moiety in the starting material is
anodically oxidized and deprotonated to furnish an amidyl radical
I,[7b] which then undergoes 5-exo-dig cyclization to produce a vinyl
radical II.[7a,11] Intramolecular 6-endo-trig cyclization of II results in
the formation of a cyclic carbon radical III. Alternatively, II can
undergo 5-exo-trig cyclization to generate an exocylic C-radical
IV, which can subsequently be converted to III via a tricyclic
radical intermediate V.[9,12,13] The vinyl radical cyclization usually
[3]
[4]
T. Fukaya, T. Ishiyama, S. Baba, S. Masumoto, J. Med. Chem. 2013, 56,
8191–8195.
a) A. Beyer, C. M. M. Reucher, C. Bolm, Org. Lett. 2011, 13, 2876–2879.
b) B. Zou, Q. Yuan, D. Ma, Org. Lett. 2007, 9, 4291–4294. c) J. Yu, C.
Gao, Z. Song, H. Yang, H. Fu, Eur. J. Org. Chem. 2015, 2015, 5869–
5875. d) T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller, S. R.
Waldvogel, Chem. Commun. 2017, 53, 2974–2977.
affords
a
mixture of 5-exo and 6-endo products.[9,12,13]
[5]
a) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–
13319. b) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485–4540.
c) R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521. d) A.
Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2018, 57, 5594–5619; Angew. Chem. 2018, 130,
5694–5721. e) S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27–45. f) S. R.
Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018, 118,
6706–6765. g) J.-i. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem.
Rev. 2008, 108, 2265–2299. h) J. E. Nutting, M. Rafiee, S. S. Stahl,
Chem. Rev. 2018, 118, 4834–4885.
Computational studies suggested that the substitution pattern of
the acceptor alkene moiety plays a critical role in the mechanistic
pathway through which the second cyclization step would
proceed kinetically (Scheme 5c). The tertiary C-radical III next
undergoes SET oxidation, followed by deprotonation, to afford a
cyclohexadiene intermediate VI, which is eventually
dehydrogenated through the sequential loss of two electrons and
two protons to generate the final benzo-fused heterocyclic
product. The electrons gathered at the anode travel to the cathode
and combine with protons to produce H2. As a result, no electron
and proton acceptors are needed.
[6]
a) R. Feng, J. A. Smith, K. D. Moeller, Acc. Chem. Res. 2017, 50, 2346–
2352. b) T. Morofuji, A. Shimizu, J.-i. Yoshida, J. Am. Chem. Soc. 2013,
135, 5000–5003. c) N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science
2017, 357, 575–579. d) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K.
Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77–81. e) A.
Badalyan, S. S. Stahl, Nature 2016, 535, 406–410. f) N. Sauermann, T.
H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086–7103. g) G.
S. Sauer, S. Lin, ACS Catal. 2018, 8, 5175–5187. h) Q.-L. Yang, P. Fang,
T.-S. Mei, Chin. J. Chem. 2018, 36, 338–352.
In summary, we have achieved the synthesis of
benzimidazolones and benzoxazolones through de novo
construction of the benzoheterocyclic scaffold via electrochemical
dehydrogenative radical cyclization of acyclic precursors. These
reactions allow efficient access to highly functionalized
benzimidazolones and benzoxazolones, including fully
substituted benzoheterocycles, with complete control of
regioselectivity.
[7]
a) L. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X. Yan, X. Lu, H.-C. Xu,
Angew. Chem. Int. Ed. 2016, 55, 2226–2229; Angew. Chem. 2016, 128,
2266–2269. b) P. Xiong, H.-H. Xu, H.-C. Xu, J. Am. Chem. Soc. 2017,
139, 2956–2959. c) Z.-W. Hou, Z.-Y. Mao, Y. Y. Melcamu, X. Lu, H.-C.
Xu, Angew. Chem. Int. Ed. 2018, 57, 1636–1639; Angew. Chem. 2018,
130, 1652–1655.
[8]
[9]
a) T. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069–3087. b) S. Z.
Zard, Chem. Soc. Rev. 2008, 37, 1603–1618. c) M. D. Kärkäs, Chem.
Soc. Rev. 2018, 47, 5786–5865. d) Y. Zhao, W. Xia, Chem. Soc. Rev.
2018, 47, 2591–2608.
Acknowledgements
Financial
support
of
this
research
from
MOST
M. Journet, M. Malacria, J. Org. Chem. 1992, 57, 3085–3093.
(2016YFA0204100), NSFC (21672178) and the Fundamental
Research Funds for the Central Universities.
[10] D. P. Curran, J. Tamine, J. Org. Chem. 1991, 56, 2746–2750.
[11] a) D. F. Reina, E. M. Dauncey, S. P. Morcillo, T. D. Svejstrup, M. V.
Popescu, J. J. Douglas, N. S. Sheikh, D. Leonori, Eur. J. Org. Chem.
2017, 2017, 2108–2111; b) N. Fuentes, W. Kong, L. Fernandez-Sanchez,
E. Merino, C. Nevado, J. Am. Chem. Soc. 2015, 137, 964-973.
[12] A. Padwa, P. Rashatasakhon, A. D. Ozdemir, J. Willis, J. Org. Chem.
2005, 70, 519–528.
Keywords:
electrochemistry
•
benzimidazolones
•
benzoxazolones • dehydrogenative cyclization cascade • radical
[1]
a) M. E. Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol.
2010, 14, 347–361. b) P. Jacques, C. Pascal, C. Evelina, Curr. Med.
Chem. 2005, 12, 877–885.
[13] G. Stork, R. Mook, J. Am. Chem. Soc. 1987, 109, 2829–2831.
This article is protected by copyright. All rights reserved.