2176 J . Org. Chem., Vol. 67, No. 7, 2002
Sch em e 1. Tw o P ossible Mech a n ism s of th e Heter o-Diels-Ald er Rea ction
Wang et al.
D-camphorato,4b,c,d,6 carboxamidate,5c N-tosyltrytophan,7a
3,3′-disubstituted-BINOL,8a,b,c,d,f triflylamide,9a salen,10,12a,b
BINOL,11a,b bisoxazoline,5b,9d,11 and BNP11b,c ((R)-1,1′-
binaphthyl-2,2′-diylphosphonate). Other metal-catalyzed
HDA reactions using such as Ce(III),14 Nd(III),15 and Sm-
(III)15 have been reported; however, the catalytic asym-
metric process has not been realized by utilizing these
metal ions. Among those catalytic asymmetric HDA
reactions, the best chiral catalysis (97% yield and 99%
ee) is achieved in the asymmetric organoaluminum-
catalyzed HDA reaction between 1 and benzaldehyde.8d
However, there are not good catalysts which could afford
the desired product with high enantioselectivity and yield
between 1 and extensive aldehydes (Scheme 1). There
are two different reaction paths for the formation of the
product of the HDA reaction, 2,3-dihydro-2-substituent-
4-pyranone, depending on the Lewis acid catalyst used.
These paths are classified into two mechanisms formu-
lated as Mukaiyama aldol and concerted [4 + 2] cycload-
dition mechanisms. Utilizing boron5 and titanium9 cata-
lysts involves a stepwise mechanism involving an initial
Mukaiyama aldol addition, followed by cyclization. How-
ever, the concerted Diels-Alder pathway has been posi-
tively identified in reactions catalyzed by Lewis acids
based on zinc,4a europium,4b,c,d rhodium,5b aluminum,6
chromium,8 cuprum,11 and cerium.12
The enantioselective hetero-Diels-Alder reaction has
been successfully applied to the synthesis of several
natural products,8c,13a,b,f,18 and recent findings in this area
include, for example, development of a new catalyst,9d
improvement of the old catalytic system in order to obtain
high enantioselectivity,12b widening substrate generality,11e
and improvement of reaction economy.13c,d Recently, we
reported our preliminary studies of the high enantiose-
lective synthesis of optically active dihydropyranone by
using chiral titanium(IV) 5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-
bi-2-naphthol complexes.11c The present paper describes
studies of relationships among catalyst structure and
activity, substrate generality, mechanism, and limita-
tions.
Resu lts a n d Discu ssion
Liga n d a n d Lew is Acid Su r vey. A variety of differ-
ent ligands and Lewis acids have been examined as
catalysts for the hetero-Diels-Alder reaction of benzal-
dehyde and Danishefsky’s diene. The ligands were pre-
pared according to literature procedures.19 The catalyst
was in situ prepared by stirring a solution of the chiral
ligands and Ti(OiPr)4 in toluene in molar ratio of 1.1:1.
Without catalyst isolation, adding benzaldehyde to a
cooled catalyst solution at 0 °C, followed by dropwise
addition of the Danishefsky’s diene and treatment with
trifluoroacetic acid at the end of reaction, afforded the
2,3-dihydro-2-phenyl-4-pyranone. The enantioselectivity
of product was assayed by chiral GC. The absolute
configuration of the product was established by compar-
Highly enantioselective HDA reactions between less
nucleophilic dienes bearing fewer than two oxygen sub-
stituents and carbonyl compounds were also achieved by
using some chiral Lewis acids, such as Al(III) or Ti(IV)-
BINOL, Cu(II)-bisoxazoline, and Cr(III)-Schiff base.16
Another asymmetric catalytic HDA reaction between
vinyl ethers and R,â-unsaturated acyl phosphonate or â,γ-
unsaturated R-keto ester has also been realized with high
enantioselectivity and chemical yield by utilizing Cu(II)-
bisoxazoline catalyst through a concerted [4 + 2] cycload-
dition path.17
(17) (a) Evans, D. A.; J ohnson, J . S.; Othava, E. J . J . Am. Chem.
Soc. 2000, 122, 1635-1649. (b) Evans, D. A.; Olhava, E. J .; J aney, J .
M. Angew. Chem., Int. Ed. 1998, 37, 3372-3375. (c) Evans, D. A.;
J ohnson, J . S. J . Am. Chem. Soc. 1998, 120, 4895-4896. (d) J ohannsen,
M.; J ørgensen, K. A. Tetrahedron 1996, 52, 7321-7328. (e) Thorhauge,
J .; J ohannsen, M.; J ørgensen, K. A. Angew. Chem., Int. Ed. 1998, 37,
2404-2406. (f) Zhang, W.; Thorhauge, J .; J ørgensen, K. A. Chem.
Commun. 2000, 459-460.
(18) Rainier, J . D.; Allwein, S. P.; Cox, J . M. Org. Lett. 2000, 2, 231-
234.
(13) (a) Ghosh, A. K.; Mathivanan, P.; Cappiello, J .; Krishnan, K.
Tetrahedron: Asymmetry 1996, 7, 2165-2168. (b) Ghosh, A. K.;
Mathivanan, P.; Cappiello, J . Tetrahedron Lett. 1997, 38, 2427-2430.
(c) J ohannsen, M.; Yao, S.; J ørgensen, K. A. Chem. Commun. 1997,
2169-2170. (d) Yao, S.; J ohannsen, M.; Audrain, H.; Hazell, R. G.;
J ørgensen, K. A. J . Am. Chem. Soc. 1998, 120, 8599-8605.
(14) Molander, G. A.; Rzasa. R. M. J . Org. Chem. 2000, 65, 1215-
1217.
(19) Waldmann, H.; Weigerding, M.; Dreisbach, C.; Wandrey, C.
Helv. Chim. Acta. 1994, 77, 2111-2116. (b) Dobashi, Y.; Hara, S. J .
Am. Chem. Soc. 1985, 107, 3406-3411. (c) Lin, C.; Lin, C.; Li, Y.; Chan,
A. S. C. Tetrahedron Lett. 2000, 41, 4425-4429. (d) Chan, A. S. C.;
Hu, W.; Pai, C.; J iang; Y.; Mi, A.; Yan; M.; Sun, J .; Lou, R.; Deng, J .
J . Am. Chem. Soc. 1997, 119, 9570-9571. (e) Chan, A. S. C.; Lin, C.;
Sun, J .; Hu, W.; Li, Z.; Pan, W.; Mi, A.; J iang, Y.; Yang, T.; Chen, T.
Tetrahedron: Asymmetry 1995, 6, 2953-2959. (f) Lou, R.; Mi, A.; J iang,
Y.; Qin, Y.; Li, Z.; Fu, F.; Chan, A. S. C. Tetrahedron 2000, 56, 5857-
5863. (g) Peng, Y.; Feng, X.; Li, Z.; Yang, G.; J iang, Y. J . Organomet.
Chem. 2001, 619, 204-208. (h) J iang, Y.; Zhou, X.; Hu, W.; Wu, L.;
Mi, A. Tetrahedron: Asymmetry 1995, 11, 405-408. (i) Pan, W.; Feng,
X.;. Gong, L.; Li, Z.; Hu, W.; Mi, A.; J iang, Y. Synlett 1996, 337-338.
(j) Cram, D. J .; Helgeson, R. C.; Peacock, S. C.; Kaplan, L. J .; Domeier,
L. A.; Moreau, P.; Koga, K.; Mayer, J . M.; Chao, Y.; Siegel, M. G.;
Hoffman, D. H.; Sogah, G. D. Y. J . Org. Chem. 1978, 43, 1930-1946.
(k) Sogah, G. D. Y.; Gram, D. J . J . Am. Chem. Soc. 1979, 101, 3035-
3042. (l) X.-Q. Shen, H. Guo, K.-L. Ding, Tetrahedron: Asymmetry
2000, 11, 4321-4327.
(15) Yoshitsugu, A.; Tsutoma, M.; Yukio, M.; Motoo, S. Tetrahe-
dron: Asymmetry 1996, 7, 1199-1204.
(16) (a) J ohannsen, M.; J ørgensen, K. A. J . Org. Chem. 1999, 64,
299-301. (b) Dossetter, A. G.; J amison, T. F.; J acobsen, E. N. Angew.
Chem., Int. Ed. 1999, 38, 2398-2400. (c) Motoyama, Y.; Terada, M.;
Mikami, K. Synlett 1995, 967-968. (d) Engler, T. A.; Letavic, M. A.;
Takusagawa, F.; Tetrahedron Lett. 1992, 33, 6731-6734. (e) Terada,
M.; Mikami, K.; Nakai, T. Tetrahedron Lett. 1991, 32, 935-938. (f)
Mikami, K.; Tarada, M. J . Am. Chem. Soc. 1994, 116, 2812-2820. (g)
Graven. A.; J ohannsen, M.; J ørgensen, K. A. Chem. Commun. 1997,
2169-2170. (h) Mikami, K.; Terada, M.; Motoyama, Y.; Nakai, T.
Tetrahedron: Asymmetry 1991, 2, 643-646.