Brief Articles
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 19 6165
ated by Alternative Splicing have Indistinguishable Functional
Properties. J. Biol. Chem. 1992, 267, 25703-25708.
Solution, pH 7.4, and various doses of TRH analogues. Ap-
parent inhibitory constants (Ki) were derived from curves fitted
by nonlinear regression analysis and drawn with the PRISM
program 3 (GraphPad Software, Inc.) using the formula Ki )
(IC50)/(1 + ([L]/Kd)) where IC50 is the concentration of unlabeled
analogue that half-competes and Kd is the equilibrium dis-
sociation constant for [3H]Nτ(1)-Me-His-TRH.
(8) Duthie, S. M.; Taylor, P. L.; Anderson, L.; Cook, J.; Eidne, K. A.
Cloning and Functional Characterization of the Human TRH
Receptor. Mol. Cell. Endocrinol. 1993, 95, R11-R15.
(9) Sun, Y. M.; Millar, R. P.; Ho, H.; Gershengorn, M. C.; Illing, N.
Cloning and Characterization of the Chicken Thyrotropin-
Releasing Hormone Receptor. Endocrinology 1998, 139, 3390-
3398.
Assay of Luciferase Activity. On the day prior to trans-
fection, the cells were seeded into 24-well plates (1.5 × 105/
well). After 16 h, the media were aspirated and the cells
(approximately 50% confluent) were cotransfected with plas-
mid DNA encoding CREB and CREB-activated luciferase gene
(PathDetect CREB trans-Reporting System, Stratagene) using
the calcium phosphate method. On the second day, 6 h before
the assay, medium containing 10% FBS was changed to
medium containing 1% FBS, various concentrations of TRH
and TRH analogues were added to the medium. Luciferase
activity was measured 24 h after transfection. Cells were
washed with phosphate-buffered saline and lysed with 0.2 mL
lysis buffer (25 mM Gly-Gly, pH 7.8, 15 mM MgSO4, 4 mM
EGTA, 1 mM dithiothreitol, 1% Triton X-100). Cell lysates
(0.025 mL) were combined automatically with 0.125 mL
reaction buffer (25 mM GlyGly, pH 7.8, 15 mM MgSO4, 4 mM
EGTA, 1 mM dithiothreitol, 15 mM KH2PO4, 2 mM ATP) and
0.025 mL luciferin (0.4 mM) in reaction buffer, and the
luminescence was measured for 10 s in a TR717 Microplate
Luminometer (Tropix, Bedford, MA). The levels of luciferase
activity detected by this assay reflect the activation of signaling
by TRH.
(10) Cao, J.; O’Donnell, D.; Vu, H.; Payza, K.; Pou, C.; Godbout, C.;
Jakob, A.; Pelletier, M.; Lembo, P.; Ahmad, S.; Walker, P.
Cloning and Characterization of a cDNA Encoding a Novel
Subtype of Rat Thyrotropin-Releasing Hormone Receptor. J.
Biol. Chem. 1998, 273, 32281-32287.
(11) Harder, S.; Lu, X.; Wang, W.; Buck, F.; Gershengorn, M. C.;
Bruhn, T. O. Regulator of G Protein Signaling 4 Suppresses
Basal and Thyrotropin-Releasing Hormone (TRH)-Stimulated
Signaling by Two Mouse TRH Receptors, TRH-R(1) and TRH-
R(2). Endocrinology 2001, 142, 1188-1194.
(12) Itadani, H.; Nakamura, T.; Itoh, J.; Iwaasa, H.; Kanatani, A.;
Borkowski, J.; Ihara, M.; Ohta, M. Cloning and Characterization
of a New Subtype of Thyrotropin-Releasing Hormone Receptors.
Biochem. Biophys. Res. Commun. 1998, 250, 68-71.
(13) O’Dowd, B. F.; Lee, D. K.; Huang, W.; Nguyen, T.; Cheng, R.;
Liu, Y.; Wang, B.; Gershengorn, M. C.; George, S. R. TRH-R2
Exhibits Similar Binding and Acute Signaling but Distinct
Regulation and Anatomic Distribution Compared with TRH-R1.
Mol. Endocrinol. 2000, 14, 183-193.
(14) Sun, Y.; Lu, X.; Gershengorn, M. C. Thyrotropin-Releasing
Hormone Receptors-Similarities and Differences. J. Mol. Endo-
crinol. 2003, 30, 87-97.
(15) Prokai, L. Central Nervous System Effects of Thyrotropin-
Releasing Hormone and its Analogues: Opportunities and
Perspectives for Drug Discovery and Development. Prog. Drug
Res. 2002, 59, 134-169.
(16) Perlman, J. H.; Laakkonen, L. J.; Guarnieri, F.; Osman, R.;
Acknowledgment. Navneet Kaur thanks the Uni-
versity Grants Commission (UGC), India, for the award
of Senior Research Fellowship.
Gershengorn, M. C.
A Refined Model of the Thyrotropin-
Releasing Hormone (TRH) Receptor Binding Pocket. Experi-
mental Analysis and Energy Minimization of the Complex
between TRH and TRH Receptor. Biochemistry 1996, 35, 7643-
7650.
(17) Griffiths, E. C.; Kelly, J. A.; Ashcroft, A.; Ward, D. J.; Robson,
B. Comparative Metabolism and Conformation of TRH and its
Analogues Ann. N. Y. Acad. Sci. 1989, 553, 217-231.
(18) Perlman, J. H.; Colson, A. O.; Jain, R.; Czyzewski, B.; Cohen,
L. A.; Osman, R.; Gershengorn, M. C. Role of the Extracellular
Loops of the Thyrotropin-Releasing Hormone Receptor: Evi-
dence for an Initial Interaction with Thyrotropin-Releasing
Hormone. Biochemistry 1997, 36, 15670-15676.
(19) Jain, R.; Singh, J.; Perlman, J. H.; Gershengorn, M. C. Synthesis
and Biology of New Thyrotropin-Releasing Hormone (TRH)
Analogues. Bioorg. Med. Chem. 2002, 10, 189-194.
(20) Jain, R.; El-Kadi, N.; King, M. M.; Cohen, L. A. Regiospecific
Alkylation of Histidines and Histamines at C-2. Tetrahedron
1997, 53, 2365-2370.
(21) Jain, R.; Cohen, L. A.; King, M. M. Synthesis of Novel Ring-
Substituted Histidines and Histamines. Tetrahedron 1997, 53,
4539-4548.
(22) Minisci, F. Novel Applications of Free-Radical Reactions in
Preparative Organic Chemistry. Synthesis 1973, 1-24.
(23) Minisci, F.; Vismara, E.; Fontana, F. Recent Developments of
Free-Radical Substitutions of Heteroaromatic Bases. Hetero-
cycles 1989, 28, 489-519.
(24) van Batenburg, O. D.; Kerling, K. E. T. An Improved Synthesis
of tert-Butyloxycarbonyl-L-histidine. Int. J. Pept. Protein Res.
1976, 8, 1-2.
(25) Perlman, J. H.; Thaw, C. N.; Laakkonen, L.; Bowers, C. Y.;
Osman, R.; Gershengorn, M. C. Hydrogen Bonding Interaction
of Thyrotropin-Releasing Hormone (TRH) with Transmembrane
Tyrosine 106 of the TRH Receptor. J. Biol. Chem. 1994, 269,
1610-1613.
Supporting Information Available: Detailed experi-
mental procedures and spectral data for all synthesized
compounds. This material is available free of charge via the
References
(1) Guillemin, R. Hormones Secreted by the Brain. Isolation,
Molecular Structure and Synthesis of the First Hypophysiotropic
Hypothalamic Hormone (to be Discovered) TRF (Thyrotropin-
Releasing Factor). Science 1970, 68, 64-67.
(2) Schally, A. V.; Redding, T. W.; Bowers, C. Y.; Barret, J. F.
Isolation of Porcine Thyrotropin-Releasing Hormone. J. Biol.
Chem. 1969, 244, 4077-4088.
(3) Boler, J.; Enzmann, F.; Folkers, K.; Bowers, C. Y.; Schally, A.
V. The Identity of Chemical and Hormonal Properties of the
Thyrotropin-Releasing Hormone and Pyroglutamyl-Histidyl-
Prolinamide. Biochem. Biophys. Res. Commun. 1969, 37, 705-
710.
(4) Burgus, R.; Dunn, J. F.; Desiderio, D.; Guillemin, R. Derives
Polypeptidiques de Syntheses Doues d’activite Hypophysiotropic
TRF. C. R. Acad. Sci. (Paris) 1969, 269, 1870-1877.
(5) Metcalf, G., Jackson, I. M. D., Eds., Thyrotropin-Releasing
Hormone: Biomedical Significance. Ann. N. Y. Acad. Sci. 1989,
553, 1-631.
(6) Straub, R. E.; French, G. C.; Joho, R. H.; Gershengorn, M. C.
Expression Cloning of a cDNA Encoding the Mouse Pituitary
Thyrotropin- Releasing Hormone Receptor. Proc. Natl. Acad. Sci.
U.S.A. 1990, 87, 9514-9518.
(7) de la Pena, P.; Delgado, L. M.; del Camino, D.; Barros, F. Two
Isoforms of the Thyrotropin-Releasing Hormone Receptor Gener-
JM0505462