Z. Yan et al. / Tetrahedron Letters 43 (2002) 7593–7595
7595
methoxy- and (2S,3S,4S)-3,4-dimethoxyglutamic acids
in 18 steps starting from -ribose with an overall yield
hedron Lett. 1998, 39, 2167–2170; (j) Wermuth, C. G.;
Mann, A.; Schoenfelder, A.; Wright, R. A.; Johnson, B.
G.; Burnett, J. P.; Mayne, N. G.; Schoepp, D. D. J. Med.
Chem. 1996, 39, 814–816; (k) Gu, Z. Q.; Hesson, D. P.;
Pelletier, J. C.; Maccechini, M. L.; Zhou, L. M.; Skol-
nick, P. J. Med. Chem. 1995, 38, 2518–2520; (l) For a
review of previous syntheses of substituted glutamic
acids, see: Dauban, P.; Chiaroni, A.; Riche, C.; Dodd, R.
H. J. Org. Chem. 1996, 61, 2488–2496.
D
of 6%. Key steps are, on one hand, the selective lactone
ring-opening of compound 7 to afford the useful
aziridine 2-carboxylate 15 and, on the other hand, the
titanate-mediated transesterification of the dimethyl
ester into the more easily deprotected dibenzyl ana-
logue. The pharmacological activity of these substituted
glutamic acids with respect to GluRs will be reported
elsewhere.
3. (a) Oba, M.; Koguchi, S.; Nishiyama, K. Tetrahedron
Lett. 2001, 42, 5901–5902; (b) Langlois, N. Tetrahedron
Lett. 1999, 40, 8801–8803.
Acknowledgements
4. (a) Dubois, L.; Dodd, R. H. Tetrahedron 1993, 49, 901–
910; (b) Dubois, L.; Mehta, A.; Tourette, E.; Dodd, R.
H. J. Org. Chem. 1994, 59, 434–441; (c) Dauban, P.;
Dubois, L.; Tran Huu Dau, E.; Dodd, R. H. J. Org.
Chem. 1995, 60, 2035–2043; (d) Dauban, P.; Dodd, R. H.
J. Org. Chem. 1997, 62, 4277–4284; (e) Dauban, P.;
Hofmann, B.; Dodd, R. H. Tetrahedron 1997, 53, 10743–
10752; (f) De Saint-Fuscien, C.; Tarrade, A.; Dauban, P.;
Dodd, R. H. Tetrahedron Lett. 2000, 41, 6393–6397.
5. Dauban, P.; De Saint-Fuscien, C.; Dodd, R. H. Tetra-
hedron 1999, 55, 7589–7600.
6. Dauban, P.; De Saint-Fuscien, C.; Acher, F.; Pre´zeau, L.;
Brabet, I.; Pin, J.-P.; Dodd, R. H. Bioorg. Med. Chem.
Lett. 2000, 10, 129–133.
7. Seebach, D.; Hungerbu¨hler, E.; Naef, R.; Schnurren-
berger, P.; Weidmann, B.; Zu¨ger, M. Synthesis 1982,
138–141.
8. Shapiro, G.; Marzi, M. J. Org. Chem. 1997, 62, 7096–
7097.
9. The epimerization at the C-4 position could be related to
the Lewis acidity of the titanium complexes.
10. It should be mentioned that such a controlled lactone
ring-opening reaction was also performed with 2,3-
aziridino-g-lactone 6 in the presence of benzyl alcohol,
but in rather poor yield (<35%).
We thank the CNRS (Z.Y.) for a fellowship and the
EEC for a Marie Curie (R.W.) fellowship and financial
support.
References
1. For recent and relevant reviews on excitatory amino acids
pharmacology, see: (a) Bra¨uner-Osborne, H.; Egebjerg,
J.; Nielsen, E. Ø.; Madsen, U.; Krogsgaard-Larsen, P. J.
Med. Chem. 2000, 43, 2609–2645; (b) Moloney, M. G.
Nat. Prod. Rep. 1999, 16, 485–498; (c) Doble, A. Pharma-
col. Ther. 1999, 81, 163–221.
2. For recent examples, see: (a) Bunch, L.; Johansen, T. H.;
Bra¨uner-Osborne, H.; Stensbøl, T. B.; Johansen, T. N.;
Krogsgaard-Larsen, P.; Madsen, U. Bioorg. Med. Chem.
2001, 9, 875–879; (b) Pedregal, C.; Collado, I.; Escribano,
A.; Ezquerra, J.; Dominguez, C.; Mateo, A. I.; Rubio,
A.; Baker, S. R.; Goldsworthy, J.; Kamboj, R. K.; Bal-
lyk, B. A.; Hoo, K.; Bleakman, D. J. Med. Chem. 2000,
43, 1958–1968; (c) Baker, S. R.; Bleakman, D.; Ezquerra,
J.; Ballyk, B. A.; Deverill, M.; Ho, K.; Kamboj, R. K.;
Collado, I.; Dominguez, C.; Escribano, A.; Mateo, A. I.;
Pedregal, C.; Rubio, A. Bioorg. Med. Chem. Lett. 2000,
10, 1807–1810; (d) Ma, D.; Tang, G.; Tian, H.; Zou, G.
Tetrahedron Lett. 1999, 40, 5753–5756; (e) Guillena, G.;
Manchen˜o, B.; Na´jera, C.; Ezquerra, J.; Pedregal, C.
Tetrahedron 1998, 54, 9447–9456; (f) Escribano, A.;
Ezquerra, J.; Pedregal, C.; Rubio, A.; Yruretagoyena, B.;
Baker, S. R.; Wright, R. A.; Johnson, B. G.; Schoepp, D.
D. Bioorg. Med. Chem. Lett. 1998, 8, 765–770; (g)
Receveur, J.-M.; Guiramand, J.; Re´casens, M.; Roumes-
tant, M.-L.; Viallefont, P.; Martinez, J. Bioorg. Med.
Chem. Lett. 1998, 8, 127–132; (h) Helaine, V.; Bolte, J.
Tetrahedron: Asymmetry 1998, 9, 3855–3861; (i)
Dominguez, E.; O’Donnell, M. J.; Scott, W. L. Tetra-
11. Ti(OBn)4 was prepared by refluxing a solution of Ti(Oi-
Pr)4 in toluene in the presence of 5 equiv. of benzyl
alcohol.
12. Selected data: compound 4: mp 192–193°C; [h]2D1 −19.1 (c
1
0.115, MeOH); H NMR (200 MHz, CD3OD) l 3.42 (s,
3H), 3.91 (m, 1H), 4.04 (m, 1H), 4.48 (m, 1H); 13C NMR
(50 MHz, CD3OD) l 53.0, 59.2, 70.0, 84.9, 163.8, 169.2.
Compound 5: mp 191–193°C; [h]2D1 −35.2 (c 0.125,
MeOH); 1H NMR (200 MHz, CD3OD) l 3.42 (s, 3H),
3.46 (s, 3H), 3.85 (m, 1H), 4.16 (m, 1H), 4.20 (m, 1H);
13C NMR (50 MHz, CD3OD) l 53.4, 58.0, 79.2, 82.9,
173.0, 178.2.