COMMUNICATIONS
[2] P. A. Baguley, J. C. Walton, Angew. Chem. 1998, 110, 3272; Angew.
Chem. Int. Ed. 1998, 37, 3072.
Soc. 1987, 109, 3493. For review see: P. Dowd, W. Zhang, Chem. Rev.
1993, 93, 2091.
[3] H. G. Kuivila, L. W. Menapace, J. Org. Chem. 1963, 28, 2165; E. J.
Corey, J. W. Suggs, J. Org. Chem. 1975, 40, 2554; G. Stork, P. M. Sher,
J. Am. Chem. Soc. 1986, 108, 303; D. S. Hays, G. C. Fu, J. Org. Chem.
1996, 61, 4; D. S. Hays, G. C. Fu, J. Org. Chem. 1998, 63, 2796, and
references therein; I. Terstiege, R. E. Maleczka, Jr., J. Org. Chem.
1999, 64, 342.
[4] W. P. Neumannn, M. Peterseim, React. Polym. 1993, 20, 189.
[5] D. P. Curran, S. Hadida, S.-Y. Kim, Z. Luo, J. Am. Chem. Soc. 1999,
121, 6607.
[27] As a side reaction, radical hydrosilylation of the olefin occurred
(<10%). Lower yields were obtained if the olefin was used in a larger
excess (>2 equiv).
[28] D. Griller, K. U. Ingold, Acc. Chem. Res. 1980, 13, 317; M. Newcomb,
Tetrahedron 1993, 49, 1151.
[29] C. Chatgilialoglu, J. Dickhaut, B. Giese, J. Org. Chem. 1991, 61, 6399.
[30] C. Chatgilialoglu, K. U. Ingold, J. C. Scaiano, J. Am. Chem. Soc. 1981,
103, 7739.
[31] J. Lusztyk, B. Maillard, D. A. Lindsay, K. U. Ingold, J. Am. Chem. Soc.
1983, 105, 3578.
[6] J. Light, R. Breslow, Tetrahedron Lett. 1990, 31, 2957; R. Rai, D. B.
Collumn, Tetrahedron Lett. 1994, 35, 6221.
[7] E. Vedejs, S. M. Duncan, A. R. Haight, J. Org. Chem. 1993, 58, 3046;
D. L. J. Clive, W. Yang, J. Org. Chem. 1995, 60, 2607.
[8] D. P. Curran, C.-T. Chang, J. Org. Chem. 1989, 54, 3140; D. Crich, S.
Ã
Sun, J. Org. Chem. 1996, 61, 7200; P. Renaud, E. Lacote, L. Quaranta,
Tetrahedron Lett. 1998, 39, 2123; B. S. Edelson, B. M. Stoltz, E. J.
Corey, Tetrahedron Lett. 1999, 40, 6729.
[9] M. Oba, Y. Kawahara, R. Yamada, H. Mizuta, K. Nishiyama, J. Chem.
Soc. Perkin Trans. 2 1996, 1843; T. Gimisis, M. Ballestri, C. Ferreri, C.
Chatgilialoglu, R. Boukherroub, G. Manuel, Tetrahedron Lett. 1995,
36, 3897.
[{Au[m-N(SiMe3)2]}4]: The First Base-Free
Gold Amide**
Scott D. Bunge, Oliver Just, and William S. Rees, Jr.*
Dedicated to Professor Herbert Schumann
on the occasion of his 65th birthday
[10] O. Yamazaki, H. Togo, S. Matsubayashi, M. Yokoyama, Tetrahedron
1999, 55, 3735.
Â
[11] C. Chatgilialoglu, M. Ballestri, J. Escudie, I. Pailhous, Organometallics
1999, 18, 2395; T. Nakamura, H. Yorimitsu, H. Shinokubo, K. Oshima,
Synlett 1999, 1415, and references therein.
[12] D. H. R. Barton, D. O. Jang, J. Cs. Jaszberenyi, J. Org. Chem. 1993, 58,
6838; S. R. Graham, J. A. Murphy, D. Coates, Tetrahedron Lett. 1999,
40, 2415.
Throughout the Periodic Table, the use of the bis(trime-
thylsilyl)amido ligand N(SiMe3)2À has played a central role in
the synthesis and characterization of metal and metalloid
complexes with low coordination numbers.[1] Despite the
extensive use, only a few examples of noble- or heavier
coinage-metal derivatives have been reported. This deficiency
may be attributed to the instability of these compounds, which
arises from the combination of a soft metal with a hard amide
ligand.[2] Herein, the first synthesis and X-ray structural
characterization of a base-free homoleptic gold(i) di(silyl)-
amide, [{Au(m-N(SiMe3)2]}4] (1), is reported.
[13] B. P. Roberts, Chem. Soc. Rev. 1999, 28, 25.
[14] C. Chatgilialoglu, Acc. Chem. Res. 1992, 25, 188.
[15] J. A. Hawari, P. S. Engel, D. Griller, Int. J. Chem. Kinet. 1985, 17, 1215;
M. Newcomb, S. U. Park, J. Am. Chem. Soc. 1986, 108, 4132; L.
Jackson, J. C. Walton, Tetrahedron Lett. 1999, 40, 7019.
[16] G. Binmore, J. C. Walton, L. Cardellini, J. Chem. Soc. Chem.
Commun. 1995, 27; P. A. Baguley, J. C. Walton, J. Chem. Soc. Perkin
Trans. 1 1998, 2073.
[17] M. Kira, H. Sugiyama, H. Sakurai, J. Am. Chem. Soc. 1983, 105, 6436.
[18] A sample of 5 stored for nine months at 48C under argon did not
decompose. At room temperature under air only very slow decom-
position was observed. The triisopropyl derivative 6 is an oil and is
slightly less stable, but can be stored under argon at 48C. Compound 7
is not stable.
[19] It is well known that silyl radicals add to benzene and are thus
precluded from propagating a chain; therefore short chains would to
be expected in benzene and account for the reduction of bromoada-
mantane not proceeding to completion. C. Chatgilialoglu, K. U.
Ingold, J. C. Scaiano, J. Am. Chem. Soc. 1983, 105, 3292.
[20] So far, we are not sure whether the problem in the reaction with 8 lies
in the regioselectivity of the hydrogen-abstraction step (pathway b in
Scheme 1) or in the rearomatization process. Trimethylsilylated
cyclohexadienyl radicals mainly give trimethylsilylbenzene in the
rearomatization process.[17] Silyl radical expulsion is only observed at
high temperatures (1308C). So far, no kinetic data on the fragmenta-
tion of silyl radicals in silylated cyclahexadienyl radicals have been
reported.
The gold(i) amide 1 was prepared in 19% yield by the
metathesis reaction of lithium bis(trimethylsilyl)amide with
1
gold(i) chloride in diethyl ether (Scheme 1). H NMR and
13C NMR spectroscopic analyses of 1 in CDCl3 revealed the
presence of singlets at d 0.34 and 6.707, respectively. The EI
and CI mass spectra revealed a tetranuclear parent ion, with
the expected fragment ions.
Scheme 1. Synthetic route leading to the formation of 1.
[21] K. Miura, Y. Ichinose, K. Nozaki, K. Fugami, K. Oshima, K. Utimoto,
Bull. Chem. Soc. Jpn. 1989, 62, 143.
[22] We also tried to run the reaction under an O2 atmosphere without
using an additional initiator. Results were not reproducible and yields
ranging from 50 ± 99% were obtained.
[23] D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. 1 1975,
1574.
[24] M. J. Robins, J. S. Wilson, J. Am. Chem. Soc. 1981, 103, 932.
[25] Unfortunately, reduction of the methyl xanthate derived from
1-adamantol with 5 afforded adamantane in only 13% yield, however,
secondary methyl xanthates can be deoxygenated in high yields (not
shown).
[*] Prof. Dr. W. S. Rees, Jr., S. D. Bunge, Dr. O. Just
Georgia Institute of Technology
School of Chemistry and Biochemistry and School of Materials
Science and Engineering and Molecular Design Institute
Atlanta, GA 30332-0400 (USA)
Fax : (1)404-894-1144
[**] This work was supported by the United States Office of Naval
Research. W. S. R., Jr. was the recipient of an Alexander von
Humboldt Award during 1998 ± 1999 with Prof. Dr. H. Schumann at
the Technische Universität Berlin.
[26] A. L. J. Beckwith, D. M. OꢁShea, S. Gerba, S. W. Westwood, J. Chem.
Soc. Chem. Commun. 1987, 666; P. Dowd, S.-C. Choi, J. Am. Chem.
3082
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3917-3082 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 17