Macromolecules, Vol. 36, No. 2, 2003
Self-Assembled Aggregates of a Polyfluorene 327
Refer en ces a n d Notes
and experimental work has been done on the photo-
physics of conjugated polymers, including the nature of
the excited states, the origin of luminescence, and the
nature of charge photogeneration, these photophysical
processes in conjugated polymers remain poorly under-
stood and controversial.13 More experiments about the
mechanism are in progress in our laboratory.
(1) (a) Mu¨llen, K.; Wegner, G. Electronic Materials: The Oligo-
mer Approach; Wiley-VCH: Weinheim, Germany, 1998. (b)
Handbook of Conducting Polymers; Skotheim, T. A., Elsen-
baumer, R. L., Reynolds, J ., Eds.; Marcel Dekker: New York,
1997. (c) Swager, T. M. Acc. Chem. Res. 1998, 31, 201. (d)
Heeger, A. J . Solid Commun. 1998, 107, 673.
We also employed scanning electron microscopic
(SEM) to observe the mesoscopic superstructure at dried
films of P 1. After slow evaporation of toluene solution
of P 1, SEM results revealed the formation of entangled
nanostructures, which was induced through the hydro-
gen bonding and aggregation as Figure 6 shows. The
diameters of the cylindrical strands are in the range of
about 10-100 nm, with certain diameters occurring
more frequently, which meant the existence of further
hierarchical organizations. After being exposed to air,
the solid films of P 1 did not exhibit any obvious change.
The folding process of P 1 induced by intra- and/or
intermolecular interactions (hydrogen-bonding and ag-
gregation) can be compared to the superstructure
formation in proteins.14
(2) (a) Burroughes, J . H.; Bradley, D. D. C.; Brown, A. R.; Marks,
R. N.; MacKay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. R.
Nature (London) 1990, 347, 539. (b) Gustafsson, G.; Cao, Y.;
Treasy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J .
Nature (London) 1992, 357, 477. (c) Kraft, A.; Grimsdale, A.
C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402.
(3) (a) Brown, A. R.; Pomp, A.; Hart, C. M.; de Leeuw, D. M.
Science 1995, 270, 972. (b) Horowitz, G. Adv. Mater. 1998,
10, 365. (c) Sirringhaus, H.; Brown, P. J .; Friend, R. H.;
Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.;
Spiering, A. J . H.; J anssen, R. A. J .; Meijer, E. W.; Herwig,
P.; de Leeuw, D. M. Nature (London) 1999, 401, 685.
(4) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev.
2000, 100, 2537.
(5) (a) Schenning, A. P. H. J .; Benneker, F. G. B.; Geurts, H. P.
M.; Liu, X. Y.; Nolte, R. J . M. J . Am. Chem. Soc. 1996, 118,
8549. (b) van Nostrum, C. F. Adv. Mater. 1996, 8, 1027. (c)
Rohr, U.; Schlichting, P.; Bo¨hm, A.; Gross, M.; Meerhholz,
K.; Bra¨uchle, C.; Mu¨llen, K. Angew. Chem., Int. Ed. 1998,
37, 1434. (d) Adam, D.; Schuhmacher, P.; Ha¨ussling, L.;
Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D.
Nature (London) 1994, 371, 141.
Con clu sion
In conclusion, a convenient approach to homopoly-
fluorenes with different substituents at the fluorene
ring, which might have special intramolecular and/or
intermolecular interactions through the hydrogen bond-
ing, had been developed in this contribution. It is
possible to prepare a series of polyfluorene derivatives
containing H-bonding or other noncovalent interactions
through a similar approach. The studies on the optical
properties of P 1 demonstrated that it exhibited in-
tramolecular and intermolecular H-bonding in the dilute
solution and in the film. The fluorescent spectra of P 1
showed that the new emission peak at about 525 nm
appeared in the dilute toluene solution, and its intensity
was decreased with increase of the polarity of solvents
and fully disappeared in high hydrogen-bonding sol-
vents or with addition of methanol. In solid films, this
new emission peak red-shifted to 572 nm and became
the maximum although other two peaks at about 410
and 436 nm were also observed with quite low intensity.
It implied that the interactions were strengthened
through the hydrogen bonding. P 1 emitted different
light in dilute solutions (blue color) and in films (yel-
lowish-orange color) under the irradiation of UV light.
The time-resolved PL decay dynamics were also dem-
onstrated the existence of such interactions in P 1.
However, this phenomenon was not observed in another
polymer (P 2) without hydrogen-bonding interactions.
The scanning electron microscopic (SEM) results of P 1
at dried films revealed the formation of entangled
nanostructures induced through the hydrogen-bonding
interactions. Therefore, the investigation showed that
the interaction between the nitrogen and the hydroxy
group at the 9-position occupied an important role in
the optical properties, which might provide a new
approach to control over molecular ordering through
interchain interactions, especially the hydrogen bond-
ing.
(6) Wu¨rthner, F.; Thalacker, C.; Sautter, A. Adv. Mater. 1999,
11, 754.
(7) Tang, B. Z. Polym. News 2001, 26, 262.
(8) (a) Fukuda, M.; Sawada, K.; Yoshino, K. J . Polym. Sci., Part
A: Polym. Chem. 1993, 31, 2465. (b) Pei, Q.; Yang, Y. J . Am.
Chem. Soc. 1996, 118, 7416. (c) Ranger, M.; Rondeau, D.;
Leclerc, M. Macromolecules 1997, 30, 786. (d) Redekcer, M.;
Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys.
Lett. 1999, 74, 1400. (e) Bliznyuk, V. N.; Carter, S. A.; Scoot,
J . C.; Klarner, G.; Miller, R. D.; Miller, D. C. Macromolecules
1978, 11, 1800. (f) Klarner, G.; Lee, J . I.; Lee, V. Y.; Chan,
E.; Chen, J . P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott,
J . C.; Miller, R. D. Chem. Mater. 1999, 11, 1800.
(9) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 50, 4467. (b) Takahashi, S.; Kunoyama, Y.; Sonogash-
ira, K.; Hagihara, N. Synthesis 1980, 627. (c) Yu, W.-L.; Pei,
J .; Cao, Y.; Huang, W.; Heeger, A. J . Chem. Commun. 1999,
1837.
(10) (a) Yu, W.-L.; Cao, Y.; Pei, J .; Huang, W.; Heeger, A. J . Appl.
Phys. Lett. 1999, 75, 3270. (b) Yu, W.-L.; Pei, J .; Huang, W.;
Heeger, A. J . Adv. Mater. 2000, 12, 828.
(11) List, E. J . W.; Guentner, R.; de Freitas, P. S.; Scherf, U. Adv.
Mater. 2002, 14, 374.
(12) (a) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.;
Mu¨llen, K.; Meghdadi, F.; List, E. J . W.; Leising, G. J . Am.
Chem. Soc. 2001, 123, 946. (b) Marsitzky, D.; Vestberg, R.;
Blainey, P.; Tang, B. T.; Hawker, C. J .; Carter, K. R. J . Am.
Chem. Soc. 2001, 123, 6965.
(13) (a) Heeger, A. J .; Kivelson, S.; Schreiffer, R. J .; Su, W. P. Rev.
Mod. Phys. 1988, 60, 781. (b) Rauscher, U.; Bassler, H.;
Bradley, D. D. C.; Hennecke, M. Phys. Rev. B 1990, 42, 9830.
(c) Frankevich, E. L. Phys. Rev. B 1992, 46, 9320. (d) Hsu, J .
W. P.; Yan, M.; J edju, T. M.; Rothberg, L. J .; Hsieh, B. R.
Phys. Rev. B 1994, 49, 712. (e) Soos, Z. G.; Etemad, S.; Galvao,
D. S.; Ramasesha, S. Chem. Phys. Lett. 1992, 194, 341.
(14) (a) Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997,
277, 1225. (b) Nelson, J . C.; Saven, J . G.; Moore, J . S.;
Wolynes, P. G. Science 1997, 277, 1793.
MA020744S