Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC04044C
COMMUNICATION
Journal Name
Izumi, T. Torigoe, H. Ishiguchi, H. Uramoto, Y. Yoshida, M.
Tanabe, T. Ise, T. Murakami, T. Yoshida, M. Nomoto and K.
Kohno, Cancer Treat. Rev., 2003, 29, 541-549.
6
7
8
R. Pérez-Tomás, B. Montaner, E. Llagostera and V. Soto-
Cerrato, Biochem. Pharmacol., 2003, 66, 1447-1452.
N. Darshan and H. K. Manonmani, J. Food Sci. Technol., 2015,
52, 5393-5407.
B. Díaz de Greñu, P. I. Hernández, M. Espona, D. Quiñonero,
M. E. Light, T. Torroba, R. Pérez-Tomás and R. Quesada,
Chem. Eur. J., 2011, 17, 14074-14083.
9
N. Someya, M. Nakajima, K. Hirayae, T. HIBI and K. Akutsu, J.
Gen. Plant Pathol., 2001, 67, 312-317.
Fig. 4 Ion transport activity of 1d (2.5 ꢀM) in the presence and the absence of FCCP (0.8
ꢀM) (A), and valinomycin (2.5 pM) (B). Anion selectivity without pH gradient (C).
10 R. K. Suryawanshi, C. D. Patil, H. P. Borase, C. P. Narkhede, B.
K. Salunke and S. V. Patil, Pestic. Biochem. Physiol., 2015,
123, 49-55.
anion symport mechanism is further confirmed by checking
the transport across EYPC-LUVs (inside 1 mM HPTS, 100 mM
NaNO3, HEPES 10 mM, pH 7.0). These vesicles were suspended
in the buffer (100 mM NaCl, 10 mM HEPES, pH = 7.0) and the
transport is monitored after the addition of 1d resulted in the
H+/NO3− efflux confirming the symport mechanism (Fig. S46).
In summary, we have synthesized 1H-indole-2-
carboxyamide-based anion receptors by further linking the
moiety to a sulfonamide with varied aryl groups. This class of
molecules was envisaged to bind anion, and transporting the
anion along with a proton by deprotonating its sulfonamide
group. The co-crystallization of 1b with TBACl revealed the
binding of two Cl− ions by two receptor molecules with the
help of multiple water molecules. The 1H-NMR titration
experiments also confirmed anion binding. All receptors
11 J. L. Sessler, L. R. Eller, W.-S. Cho, S. Nicolaou, A. Aguilar, J. T.
Lee, V. M. Lynch and D. J. Magda, Angew. Chem. Int. Ed.,
2005, 44, 5989-5992.
12 W. Van Rossom, D. J. Asby, A. Tavassoli and P. A. Gale, Org.
Biomol. Chem., 2016, 14, 2645-2650.
13 (a) L. A. Jowett, E. N. W. Howe, V. Soto-Cerrato, W. Van
Rossom, R. Pérez-Tomás and P. A. Gale, Sci. Rep., 2017, 7,
9397; (b) K. J. Winstanley, S. J. Allen and D. K. Smith, Chem.
Commun., 2009, 4299-4301.
14 P. A. Gale, M. E. Light, B. McNally, K. Navakhun, K. E. Sliwinski
and B. D. Smith, Chem. Commun., 2005, 3773-3775.
15 N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernández,
R. Pérez-Tomás and P. A. Gale, J. Am. Chem. Soc., 2011, 133
,
14136-14148.
16 S. V. Shinde and P. Talukdar, Angew. Chem. Int. Ed., 2017, 56
,
showed ion transport activity in the order 1d
> 1b > 1e > 1f >
4238-4242.
1c > 1a > 1g. The detailed mechanistic investigation with the
17 (a) A. Roy, O. Biswas and P. Talukdar, Chem. Commun., 2017,
53, 3122-3125; (b) T. Saha, M. S. Hossain, D. Saha, M. Lahiri
and P. Talukdar, J. Am. Chem. Soc., 2016, 138, 7558-7567.
18 Marvin 5.8.0, ChemAxon 2012 (http://www.chemaxon.com).
19 (a) M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P.
R. Spackman, D. Jayatilaka and M. A. Spackman,
CrystalExplorer17 (2017); (b) J. J. McKinnon, A. S. Mitchell
most efficient transporter demonstrated the proposed proton-
anion symport process. This class of molecules may be useful
in targeting the solid tumors by promoting intracellular
acidification.
We thank SERB, Govt. of India (EMR/2014/000873B and
EMR/ 2016/001897) for funding. S.V.S. thanks CSIR for the
research fellowship.
and M. A. Spackman, Chem. –Eur. J., 1998, 4, 2136-2141; (c)
J. J. McKinnon, D. Jayatilaka and M. A. Spackman, Chem.
Commun., 2007, 3814-3816.
Conflicts of interest
20 L. Fielding, Tetrahedron, 2000, 56, 6151-6170.
21 K. Kano and J. H. Fendler, Biochim. Biophys. Acta, Biomembr.,
1978, 509, 289-299.
There are no conflicts to declare.
22 N. Sakai and S. Matile, J. Phys. Org. Chem., 2006, 19, 452-
Notes and references
460.
1
2
R. Hesketh, J. Cell Sci., 2000, 113, 2925-2926.
S. S. Mansy, Cold Spring Harbor Perspect. Biol., 2010,
a002188.
23 (a) A. V. Jentzsch, D. Emery, J. Mareda, S. K. Nayak, P.
Metrangolo, G. Resnati, N. Sakai and S. Matile, Nat.
Commun., 2012, 3, 905; (b) Y. Zhang, P. S. Cremer, Curr.
Opin. Chem. Biol., 2006, 10, 658-663
24 B. A. McNally, A. V. Koulov, B. D. Smith, J.-B. Joos and A. P.
Davis, Chem. Commun., 2005, 1087-1089.
2,
3
4
(a) B. Schwappach, Nat. Cell Biol., 2000,
2, E169; (b) D.
Bockenhauer, Curr. Opin. Pediatr., 2001, 13, 142-149.
E. P. Spugnini, P. Sonveaux, C. Stock, M. Perez-Sayans, A. De
Milito, S. Avnet, A. G. Garcia, S. Harguindey and S. Fais,
Biochim. Biophys. Acta, Biomembr., 2015, 1848, 2715-2726.
(a) O. Tredan, C. M. Galmarini, K. Patel and I. F. Tannock, J.
Natl. Cancer Inst., 2007, 99, 1441-1454; (b) N. Raghunand
25 (a) R. Benz and S. McLaughlin, Biophys. J., 1983, 41, 381-398;
(b) P. Bhattacharyya, W. Epstein and S. Silver, Proc. Natl.
Acad. Sci. U.S.A., 1971, 68, 1488-1492.
5
26 Y. Marcus, J. Chem. Soc., Faraday Trans., 1991, 87, 2995-
2999.
and R. J. Gillies, Drug Resist. Updat., 2000, 3, 39-47; (c) H.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins