ACS Catalysis
Page 6 of 8
(6) For gold catalysts: (a) Hu, X.; Martin, D.; Melaimi, M.; Bertrand,
The author declares no competing financial interests.
G., Gold-Catalyzed Hydroarylation of Alkenes with Dialkylanilines. J.
Am. Chem. Soc. 2014, 136, 13594-13597. (b) Abdellah, I.; Poater, A.;
Lohier, J.-F.; Gaumont, A.-C., Au(I)-Catalyzed hydroarylation of al-
kenes with N,N-dialkylanilines: a dual gold catalysis concept. Catal.
Sci. Technol. 2018, 8, 6486-6492. For Scandium catalyst: (c) Su, J.;
Cai, Y.; Xu, X., Scandium-Catalyzed para-Selective Alkylation of Ar-
omatic Amines with Alkenes. Org. Lett. 2019, 21, 9055-9059.
(7) (a) Pérez, M.; Mahdi, T.; Hounjet, L. J.; Stephan, D. W., Elec-
trophilic phosphonium cations catalyze hydroarylation and hydrothio-
lation of olefins. Chem. Commun. 2015, 51, 11301-11304. (b) Tsao, F.
A.; Waked, A. E.; Cao, L.; Hofmann, J.; Liu, L.; Grimme, S.; Stephan,
D. W., S(vi) Lewis acids: fluorosulfoxonium cations. Chem. Commun.
2016, 52, 12418-12421.
(8) (a) Zhu, W.; Sun, Q.; Wang, Y.; Yuan, D.; Yao, Y., Chemo- and
Regioselective Hydroarylation of Alkenes with Aromatic Amines Cat-
alyzed by [Ph3C][B(C6F5)4]. Org. Lett. 2018, 20, 3101-3104. For a pre-
vious contribution using the same catalyst in hydroamination and hy-
droarylation: (b) Anderson, L. L.; Arnold, J.; Bergman, R. G., Proton-
Catalyzed Hydroamination and Hydroarylation Reactions of Anilines
and Alkenes:ꢀ A Dramatic Effect of Counteranions on Reaction Effi-
ciency. J. Am. Chem. Soc. 2005, 127, 14542-14543.
(9) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe,
T. J., Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev.
Chem. 2017, 1, 0088.
(10) (a) Motiwala, H. F.; Fehl, C.; Li, S.-W.; Hirt, E.; Porubsky, P.;
Aubé, J., Overcoming Product Inhibition in Catalysis of the Intramo-
lecular Schmidt Reaction. J. Am. Chem. Soc. 2013, 135, 9000-9009. (b)
Vekariya, R. H.; Aubé, J., Hexafluoro-2-propanol-Promoted Intermo-
lecular Friedel–Crafts Acylation Reaction. Org. Lett. 2016, 18, 3534-
3537.
(11) (a) Li, G.-X.; Qu, J., Friedel-Crafts alkylation of arenes with
epoxides promoted by fluorinated alcohols or water. Chem. Commun.
2010, 46, 2653-2655. (b) Tian, Y.; Xu, X.; Zhang, L.; Qu, J., Tetra-
phenylphosphonium Tetrafluoroborate/1,1,1,3,3,3-Hexafluoroisopro-
panol (Ph4PBF4/HFIP) Effecting Epoxide-Initiated Cation–Olefin Pol-
ycyclizations. Org. Lett. 2016, 18, 268-271.
(12) (a) Trillo, P.; Baeza, A.; Nájera, C., Fluorinated Alcohols As
Promoters for the Metal-Free Direct Substitution Reaction of Allylic
Alcohols with Nitrogenated, Silylated, and Carbon Nucleophiles. J.
Org. Chem. 2012, 77, 7344-7354. (b) Vuković, V. D.; Richmond, E.;
Wolf, E.; Moran, J., Catalytic Friedel–Crafts Reactions of Highly Elec-
tronically Deactivated Benzylic Alcohols. Angew. Chem. Int. Ed. 2017,
56, 3085-3089. (c) Zhu, Y.; Colomer, I.; Thompson, A. L.; Donohoe,
T. J., HFIP Solvent Enables Alcohols to Act as Alkylating Agents in
Stereoselective Heterocyclization. J. Am. Chem. Soc. 2019, 141, 6489-
6493.
(13) Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F.,
Friedel–Crafts Reaction of Benzyl Fluorides: Selective Activation of
C-F Bonds as Enabled by Hydrogen Bonding. Angew. Chem. Int. Ed.
2014, 53, 13835-13839.
(14) Röckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R., A Decade
of Electrochemical Dehydrogenative C,C-Coupling of Aryls. Acc.
Chem. Res. 2020, 53, 45-61.
1
2
3
4
5
6
7
8
ACKNOWLEDGMENT
The project that gave rise to these results received the sup-
port of a Juan de la Cierva fellowship from the Spanish Min-
istry of Science (IJCI-2016-27405). The author also receives
founding from La Caixa foundation under the Junior Leader
program (LCF/BQ/PI19/11690020, ID 100010434). Prof.
Mariola Tortosa is acknowledged for her support.
9
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) (a) The chemistry of anilines, (Eds.: S. Patai, Z. Rappoport),
Wiley-VCH, Weinheim, 2007. For a review on aniline ortho-function-
alization: (b) Tischler, M. O.; Tóth, M. B.; Novák, Z., Mild Palladium
Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.
The Chemical Record 2017, 17, 184-199. For examples of aniline meta-
functionalization: (c) Phipps, R. J.; Gaunt, M. J., A Meta-Selective
Copper-Catalyzed C–H Bond Arylation. Science 2009, 323, 1593-
1597. (d) Tang, R.-Y.; Li, G.; Yu, J.-Q., Conformation-induced remote
meta-C–H activation of amines. Nature 2014, 507, 215-220. For se-
lected contributions of aniline para-functionalization: (e) Ciana, C.-L.;
Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J., A Highly Para-
Selective Copper(II)-Catalyzed Direct Arylation of Aniline and Phenol
Derivatives. Angew. Chem. Int. Ed. 2011, 50, 458-462. (f) Jia, S.; Xing,
D.; Zhang, D.; Hu, W., Catalytic Asymmetric Functionalization of Ar-
omatic C-H Bonds by Electrophilic Trapping of Metal-Carbene-In-
duced Zwitterionic Intermediates. Angew. Chem. Int. Ed. 2014, 53,
13098-13101. (g) Ma, Y.; Wang, B.; Zhang, L.; Hou, Z., Boron-Cata-
lyzed Aromatic C–H Bond Silylation with Hydrosilanes. J. Am. Chem.
Soc. 2016, 138, 3663-3666. (h) Yin, Q.; Klare, H. F. T.; Oestreich, M.,
Catalytic Friedel–Crafts C−H Borylation of Electron-Rich Arenes:
Dramatic Rate Acceleration by Added Alkenes. Angew. Chem. Int. Ed.
2017, 56, 3712-3717. (i) Leitch, J. A.; McMullin, C. L.; Paterson, A.
J.; Mahon, M. F.; Bhonoah, Y.; Frost, C. G., Ruthenium-Catalyzed
para-Selective C−H Alkylation of Aniline Derivatives. Angew. Chem.
Int. Ed. 2017, 56, 15131-15135. (j) Yuan, C.; Zhu, L.; Chen, C.; Chen,
X.; Yang, Y.; Lan, Y.; Zhao, Y., Ruthenium(II)-enabled para-selective
C–H difluoromethylation of anilides and their derivatives. Nat. Com-
mun. 2018, 9, 1189. (k) Naksomboon, K.; Poater, J.; Bickelhaupt, F.
M.; Fernández-Ibáñez, M. Á., para-Selective C–H Olefination of Ani-
line Derivatives via Pd/S,O-Ligand Catalysis. J. Am. Chem. Soc. 2019,
141, 6719-6725.
(2) (a) Calloway, N. O., The Friedel-Crafts Syntheses. Chem. Rev.
1935, 17, 327-392. (b) Olah, G.A.; Reddy, V.P.; Prakash, G.K.S.,
Friedel‐Crafts Reactions. In Kirk‐Othmer Encyclopedia of Chemical
Technology, 2000, pp 1-49. (c) Bandini, M.; Melloni, A.; Umani-Ron-
chi, A., New Catalytic Approaches in the Stereoselective Friedel–
Crafts Alkylation Reaction. Angew. Chem. Int. Ed. 2004, 43, 550-556.
(d) Sartori, G.; Maggi, R., Use of Solid Catalysts in Friedel−Crafts Ac-
ylation Reactions. Chem. Rev. 2006, 106, 1077-1104. (e) Poulsen, T.
B.; Jørgensen, K. A., Catalytic Asymmetric Friedel−Crafts Alkylation
Reactions—Copper Showed the Way. Chem. Rev. 2008, 108, 2903-
2915.
(3) (a) Lian, Y.; Burford, K.; Londregan, A. T., Expedient synthesis
of gem-dialkylbenzyl heterocycles through olefinic hydroarylation.
Tetrahedron 2015, 71, 9509-9514. (b) Lee, S. Y.; Villani-Gale, A.;
Eichman, C. C., Room Temperature Catalyst System for the Hydroary-
lation of Olefins. Org. Lett. 2016, 18, 5034-5037. (c) Bentley, J. N.;
Caputo, C. B., Catalytic Hydroarylation of Alkenes with Phenols using
B(C6F5)3. Organometallics 2018, 37, 3654-3658.
(15) Chatupheeraphat, A.; Rueping, M.; Magre, M., Chemo- and Re-
gioselective Magnesium-Catalyzed ortho-Alkenylation of Anilines.
Org. Lett. 2019, 21, 9153-9157.
(16) (a) Qi, C.; Gandon, V.; Lebœuf, D., Calcium(II)-Catalyzed In-
termolecular Hydroarylation of Deactivated Styrenes in Hexafluoroi-
sopropanol. Angew. Chem. Int. Ed. 2018, 57, 14245-14249. (b) Niel-
sen, C. D. T.; White, A. J. P.; Sale, D.; Bures, J.; Spivey, A. C., Hy-
droarylation of Alkenes by Protonation/Friedel–Crafts Trapping:
HFIP-Mediated Access to Per-aryl Quaternary Stereocenters. J. Org.
Chem. 2019, 84, 14965-14973.
(17) This para regioselectivity is in sharp contrast to seminal exam-
ples using HBF4 as the acidic catalyst, where the ortho product is the
major: (a) Beller, M.; Thiel, O. R.; Trauthwein, H., Catalytic Alkyla-
tion of Aromatic Amines with Styrene in the Presence of Cationic Rho-
dium Complexes and Acid. Synlett 1999, 1999, 243-245. (b) Rank, C.
K.; Özkaya, B.; Patureau, F. W., HBF4- and AgBF4-Catalyzed ortho-
Alkylation of Diarylamines and Phenols. Org. Lett. 2019, 21, 6830-
(4) Rueping, M.; Nachtsheim, B. J., A review of new developments
in the Friedel–Crafts alkylation – From green chemistry to asymmetric
catalysis. Beilstein J. Org. Chem. 2010, 6, 6.
(5) For a recent report on the synthesis and use of BARF counterani-
ons: Carreras, L.; Rovira, L.; Vaquero, M.; Mon, I.; Martin, E.; Benet-
Buchholz, J.; Vidal-Ferran, A., Syntheses, characterisation and solid-
state study of alkali and ammonium BArF salts. RSC Advances 2017,
7, 32833-32841, and references therein.
ACS Paragon Plus Environment