between 5.3–5.5 ppm represent signals of secondary products
with disubstituted double bonds.
An analysis of the H NMR spectra provides clear evidence
of several small oligoisoprenes. Future work will be directed
towards exploring the up-scaling of the ethenolysis reaction with
1
15
natural rubber andgutta-percha; tyre rubber especiallyappears
of the cleavage of NR and LNR. However, the amount of
products resulting from secondary reactions, such as double
to be an interesting reactant in this respect. Furthermore, the
utilization of the oligoisoprenes for the synthesis of flavors,
odorants, pheromones and pharmaceutically active compounds
will be explored.
32
bond isomerization and secondary olefin metathesis, is slightly
higher than in the squalene reactions. More importantly, the
quantity of catalyst needed for efficient cleavage reactions
amounts to ca. 0.1 mol% per double bond. This is only partly
due to the polymeric nature of the rubber, and it is likely that the
need for an increased catalyst loading is related to impurities in
Acknowledgements
This work was supported by the DFG via Pl 178/13-1. We wish
to thank Weber & Schaer GmbH & Co. KG, Hamburg for a
generous donation of natural rubber.
15–17
NR and LNR.
Nonetheless, the relatively high ethenolysis efficiency enables
facile multigram depolymerization reactions in toluene using 0.1
mol% of complexes 1 or 2 by applying the conditions reported
for squalene.
Notes and references
Following the filtration of the crude reaction mixture over a
nanofiltration membrane, a number of ethenolysis products can
be separated (Scheme 3) by simple gravity column chromatogra-
phy. Oligomers (n = 3–6) were obtained in >90% purity (HPLC,
1
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411–
502.
2
2 J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M.
Weckhuysen, Chem. Rev., 2010, 110, 3552–3599.
3 P. Gallezot, ChemSusChem, 2008, 1, 734–737.
1
NMR). The respective products were characterized by H- and
4
B. J. Nikolau, M. A. D. N. Perera, L. Brachova and B. Shanks,
Plant J., 2008, 54, 536–545.
1
3
C-NMR spectroscopy, and high resolution mass spectrometry.
Due to the large distance between equivalent groups and the
absence of conjugation, the NMR chemical shifts of the various
oligomers are fairly similar. An experiment with LNR and NR
employing 0.1 mol% of catalyst 1 per double bond provided a
ca. 65% yield of the short chain oligoisoprenes (n = 1 to ca. n =
5 M. A. R. Meier, Macromol. Chem. Phys., 2009, 210, 1073–1079.
6
7
Y. Lu and R. C. Larock, ChemSusChem, 2009, 2, 136–147.
K. A. Burdett, L. D. Harris, P. Margl, B. R. Maughon, T. Mokhtar-
Zadeh, P. C. Saucier and E. P. Wasserman, Organometallics, 2004,
23, 2027–2047.
8 G. S. Forman, R. M. Bellabarba, R. P. Tooze, A. M. Z. Slawin,
R. Karch and R. Winde, J. Organomet. Chem., 2006, 691, 5513–
1
0) in the nanofiltration permeate.
5
516.
9
D. R. Anderson, T. Ung, G. Mkrtumyan, G. Bertrand, R. H. Grubbs
and Y. Schrodi, Organometallics, 2008, 27, 563–566.
1
1
0 C. Thurier, C. Fischmeister, C. Bruneau, H. Olivier-Bourbigou and
P. H. Dixneuf, ChemSusChem, 2008, 1, 118–122.
1 Y. Schrodi, T. Ung, A. Vargas, G. Mkrtumyan, C. Lee, T. M.
Champagne, R. L. Pederson and S. H. Hong, Clean, 2008, 36, 669–
6
73.
1
1
1
1
1
1
2 S. C. Marinescu, R. R. Schrock, P. M u¨ ller and A. H. Hoveyda, J. Am.
Chem. Soc., 2009, 131, 10840–10841.
3 R. Malacea, C. Fischmeister, C. Bruneau, J.-L. Dubois, J.-L.
Couturier and P. H. Dixneuf, Green Chem., 2009, 11, 152–155.
4 V. L. Ravalec, C. Fischmeister and C. Bruneau, Adv. Synth. Catal.,
2
009, 351, 1115–1122.
5 M. B. Rodgers, D. S. Tracey and W. H. Waddelt, Rubber World, 2005,
2–38.
6 M. B. Rodgers, D. S. Tracey and W. H. Waddelt, Rubber World, 2005,
1–48.
3
4
7 L. Vayssee, F. Bonfils, P. Thaler and J. Sainte-Beuve, in RSC Green
Chemistry, ed. R. H o¨ fer, Royal Society of Chemistry, Cambridge,
UK, 2009, vol. 4, pp. 339–367.
1
1
8 S. Monfette and D. E. Fogg, Chem. Rev., 2009, 109, 3783–3816.
9 A. Alimuniar, M. A. Yarmo, M. Z. A. Rahman, S. Kohjiya, Y. Ikeda
and S. Yamashita, Polym. Bull., 1990, 23, 119–126.
2
2
2
2
2
2
2
2
0 K. B. Wagener, R. D. Puts and D. K. Smith, Makromol. Chem. Rapid
Commun., 1991, 12, 419–425.
1 S. Fomine and M. A. Tlenkopatchev, Organometallics, 2010, 29,
1
580–1587.
Scheme 3 Ethenolysis of natural rubber and the structures of the
isolated oligoisoprenes.
2 T. Vorfalt, S. Leuth a¨ ußer and H. Plenio, Angew. Chem., Int. Ed.,
2009, 48, 5191–5194.
3 V. Sashuk, L. H. Peeck and H. Plenio, Chem.–Eur. J., 2010, 16, 3983–
3
993.
4 L. H. Peeck and H. Plenio, Organometallics, 2010, 29, 2761–
2768.
5 S. Wolf and H. Plenio, J. Organomet. Chem., 2010, 695, 2418–
2422.
Conclusions
We have demonstrated that trisubstituted double bonds in squa-
lene and natural rubber undergo efficient cleavage reactions with
6 S. Leuth a¨ ußer, D. Schwarz and H. Plenio, Chem.–Eur. J., 2007, 13,
7
195–7203.
ethene catalyzed by 0.1–0.01 mol% (NHC)(NHCewg)RuCl (=
2
7 S. Leuth a¨ ußer, V. Schmidts, C. M. Thiele and H. Plenio, Chem.–Eur.
J., 2008, 14, 5465–5481.
CRR¢) complexes per double bond, resulting in the synthesis
This journal is © The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 2008–2012 | 2011