CH3), 2.98 (br, 4H, CH), 7.02 (br, 6H, ArH), 8.05 (br, 2H,
NCH); MS EI: m/z (%) 332 (Ar-DAB Ϫ Priϩ, 100), 531 (Mϩ Ϫ
2I, 10); IR (Nujol) ν/cmϪ1 1532(s), 1276(s), 1255(m), 1107(s),
799(m).
Structure determinations
Crystals of 7–13 suitable for X-ray structure determination
were mounted in silicone oil. Crystallographic measurements
were made using a Nonius Kappa CCD diffractometer. The
structures were solved by direct methods and refined on F 2 by
full matrix least squares (SHELX97)23 using all unique data.
Crystal data, details of data collections and refinements are
given in Table 1. The molecular structures of the complexes are
depicted in Fig. 2–8 and show ellipsoids at the 30% probability
level.
[{(Et2O)KGa(Ar-DAB)}2] 11
A solution of 6 (0.75 g, 1.07 mmol) in THF (15 ml) was stirred
over a potassium mirror (0.80 g, 20 mmol) at 25 ЊC for 8 hours
after which the yellow-orange solution was filtered and volatiles
removed in vacuo. The residue was extracted into Et2O (20 ml)
and the resulting solution was concentrated to ca. 10 ml and
cooled to Ϫ30 ЊC overnight to yield 11 as red crystals (0.45 g,
CCDC reference numbers 189504–189510.
lographic data in CIF or other electronic format.
1
75%), mp 180–187 ЊC (decomp.); H NMR (400 MHz, C6D6,
300 K) δ 1.28 (t, 12H, 3JHH = 6.4 Hz, CH3), 1.46 (d, 48H, 3JHH
=
6.8 Hz, CH3), 3.44 (q, 8H, 3JHH = 6.4 Hz, CH2), 3.83 (sept., 8H,
3JHH = 6.8 Hz, CH), 6.48 (s, 4H, NCH), 7.23 (t, 4H, 3JHH = 7.4
Hz, p-Ar), 7.37 (d, 8H, 3JHH = 7.4 Hz, m-Ar); 13C NMR (100.6
MHz, C6D6, 300 K) δ 15.3 (CH2CH3), 25.3 (CHCH3), 28.0
(CH), 65.6 (CH2), 122.5 (CN), 122.8 (m-ArC), 123.7 (p-ArC),
145.8 (o-ArC), 150.2 (ipso-ArC); MS EI: m/z (%) 377 [DABϩ,
5], 189 [ArNCHϩ, 100]; IR (Nujol) ν/cmϪ1 1583(s), 1557(m),
1255(s), 1096(s), 927(m).
Acknowledgements
We gratefully acknowledge financial support from the EPSRC
for personnel (studentship for M. K. and postdoctoral fellow-
ship for R. J. B.) and for the National Service for Electron
Paramagnetic Resonance (GR/R17980). Thanks also go to
Dr Peter Junk of Monash University, Melbourne for helpful
discussions regarding the crystallographic disorder in 13.
References and notes
[{(TMEDA)KGa(Ar-DAB)}2] 12
1 (a) F. G. N. Cloke, G. R. Hanson, M. J. Henderson, P. B. Hitchcock
and C. L. Raston, J. Chem. Soc., Chem. Commun., 1989,
1002; (b) T. Pott, P. Jutzi, B. Neumann and H. G. Stammler,
Organometallics, 2001, 20, 1965.
2 D. S. Brown, A. Decken and A. H. Cowley, J. Am. Chem. Soc., 1995,
117, 5421.
3 E. S. Schmidt, A. Jockisch and H. Schmidbaur, J. Am. Chem. Soc.,
1999, 121, 9578.
4 E. S. Schmidt, A. Schier and H. Schmidbaur, J. Chem. Soc., Dalton
Trans., 2001, 505.
5 C. Jones, Chem. Commun., 2001, 2293.
6 R. J. Baker, R. D. Farley, C. Jones, M. Kloth and D. M. Murphy,
Chem. Commun., 2002, 1196.
7 M. L. H. Green, P. Mountford, G. J. Smout and S. R. Peel,
Polyhedron, 1990, 9, 2763.
8 T. Pott, P. Jutzi, W. Kaim, W. W. Schoeller, B. Neumann,
A. Stammler, H. G. Stammler and M. Wanner, Organometallics,
2002, 21, 3169.
9 R. J. Baker, C. Jones and M. Kloth, unpublished results.
10 J. A. C. Clyburne, R. D. Culp, S. Kamepalli, A. H. Cowley and
A. Decken, Inorg. Chem., 1996, 35, 6651.
11 R. J. Baker, A. J. Davies, C. Jones and M. Kloth, J. Organomet.
Chem., 2002, 656, 203.
12 F. S. Mair, R. Manning, R. G. Pritchard and J. E. Warren, Chem.
Commun., 2001, 1136.
13 The experimental EPR spectra of 7 and 9 are included as ESI†.
14 J. Emsley, The Elements, Clarendon Press, Oxford, 2nd edn., 1991.
15 C. Cui, H. W. Roesky, H. G. Schmidt, M. Noltemeyer, H. Hao and
F. Cimpoesu, Angew. Chem., Int. Ed., 2000, 39, 4274.
16 N. J. Hardman, B. E. Eichler and P. P. Power, Chem. Commun., 2000,
1991.
17 See for example: N. J. Hardman, P. P. Power, J. D. Gorden,
C. L. B. Macdonald and A. H. Cowley, Chem. Commun., 2001, 1866.
18 A. Sundermann, M. Reiher and W. W. Scoeller, Eur. J. Inorg. Chem.,
1998, 305.
To a solution of 11 (0.40 g, 0.76 mmol) in Et2O (25 ml) at
Ϫ78 ЊC was added TMEDA (0.40 g, 3.5 mmol) and the result-
ing solution warmed to room temperature and stirred for
4 hours after which time volatiles were removed in vacuo and
the residue extracted into Et2O (10 ml). The resulting solution
was cooled to Ϫ30 ЊC overnight to yield 12 as red crystals
(0.31 g, 68%), mp 163–166 ЊC (decomp.); 1H NMR (400 MHz,
C6D6, 300 K) δ 1.41 (d, 24H, 3JHH = 6.9 Hz, CH3), 1.43 (d, 24H,
3JHH = 6.9 Hz, CH3), 2.05 (2, 24H, NCH3), 2.20 (s, 8H, NCH2),
3
3.82 (sept., 8H, JHH = 6.9 Hz, CH), 6.42 (s, 4H, NCH), 7.23
(t, 4H, 3JHH = 7.5 Hz, p-Ar), 7.32 (d, 8H, 3JHH = 7.5 Hz, m-Ar);
13C NMR (100.6 MHz, C6D6, 300 K) δ 26.0 (CHCH3), 28.7
(CH), 46.2 (NCH3), 58.2 (NCH2), 123.1 (CN), 123.4 (m-ArC),
124.3 (p-ArC), 146.3 (o-ArC), 151.0 (ipso-ArC); MS EI: m/z (%)
115 [TMEDAHϩ, 100], 189 [ArCNHϩ, 3]; IR (Nujol) ν/cmϪ1
1588(s), 1562(m), 1245(s), 1096(s) 1081(m).
[:Ga(Ar-DAB)]2[{K(18-crown-6)}2(ꢀ-18-crown-6)] 13
To a solution of 11 (0.29 g, 0.26 mmol) in THF (15 ml) at
Ϫ50 ЊC was added a solution of 18-crown-6 (0.30 g, 1.14 mmol)
in THF (15 ml). The resulting orange solution was allowed
to warm to 25 ЊC and was stirred for 2 hours whereupon
volatiles were removed in vacuo. The residue was extracted into
Et2O (10 ml) and the resulting solution cooled to Ϫ30 ЊC to
1
yield 13 as orange needles (0.27 g, 59%), mp 134–139 ЊC; H
3
NMR (400 MHz, C6D6, 300 K) δ 1.58 (d, 24H, JHH = 6.9 Hz,
CH3), 1.64 (d, 24H, 3JHH = 6.9 Hz, CH3), 3.27 (s, 72H, OCH2),
3
4.45 (sept., 8H, JHH = 6.9 Hz, CH), 6.82 (s, 4H, NCH), 7.28
(t, 4H, 3JHH = 7.5 Hz, p-Ar), 7.43 (d, 8H, 3JHH = 7.5 Hz, m-Ar);
13C NMR (100.6 MHz, C6D6, 300 K) δ 26.0 (CH3), 26.7 (CH3),
28.6 (CH), 70.7 (CH2), 122.2 (CN), 122.4 (m-ArC), 122.7 (p-
ArC), 146.5 (o-ArC), 152.6 (ipso-ArC); MS EI: m/z (%) 443
[Ga(Ar-DAB)ϩ 17], 377 [DABϩ, 31], 265 [18-crown-6ϩ, 100]; IR
(Nujol) ν/cmϪ1 1573(s), 1552 (m), 1255 (s), 1112(s) 794(s);
C88H144O18N4Ga2K2 requires C 59.93, H 8.23, N 3.18%; found:
C 58.92, H 8.25, N 3.10%.
19 G. Linti, R. Frey and M. Schmidt, Z. Naturforsch., Teil B, 1994, 49,
958.
20 WINEPR SIMFONIA Version 1.25, Bruker Analytische
Messtechnick GmbH, 1996.
21 L. Jafarpour, E. D. Stevens and S. P. Nolan, J. Organomet. Chem.,
2000, 606, 49.
22 J. M. Kleigman and R. K. Barnes, Tetrahedron, 1970, 26, 2555.
23 G. M. Sheldrick, SHELXL-97, University of Göttingen, 1997.
3850
J. Chem. Soc., Dalton Trans., 2002, 3844–3850