Organometallics 2009, 28, 2085–2090
2085
A Boron-Substituted Analogue of the Shvo Hydrogenation Catalyst:
Catalytic Hydroboration of Aldehydes, Imines, and Ketones
Liza Koren-Selfridge,† Hannah N. Londino,† Jessica K. Vellucci,† Bryan J. Simmons,‡
Charles P. Casey,‡ and Timothy B. Clark*,†
Department of Chemistry, Western Washington UniVersity, Bellingham, Washington 98225-9150, and
Department of Chemistry, UniVersity of WisconsinsMadison, Madison, Wisconsin 53706
ReceiVed December 31, 2008
The boron-substituted hydroxycycylopentadienyl ruthenium hydride [2,5-Ph2-3,4-Tol2(η5-C4COBpin)Ru-
(CO)2H] (Bpin ) 4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 5 was synthesized by the addition of
pinacolborane to ruthenium dimer [2,5-Ph2-3,4-Tol2(η5-C4CO)Ru(CO)2]2 4. Complex 5 reacts with
aldehydes both stoichiometrically and catalytically, providing hydroboration products under mild reaction
conditions. A Hammett correlation plot of para-substituted benzaldehydes provided a F value of +0.91.
Catalytic hydroboration of aryl imines provided high yields of the corresponding amines. The hydroboration
of aryl ketones, however, required strongly electron-withdrawing substituents to induce hydroboration in
reasonable reaction times.
Introduction
Ligand-metal bifunctional catalysis has become a valuable
method for the hydrogenation of various organic substrates.1
The Shvo catalyst [2,3,4,5-Ph4(η5-C4COH)Ru(CO)2H] (RuHOH
1, Scheme 1) can be used in the hydrogenation of polarized
double (CdY) and triple bonds (CtY).2-5 Mechanistic studies
have revealed detailed insights into each elementary step of the
catalytic cycle.6-12 The key mechanistic step involves a unique
Figure 1. Boron-substituted analogues of the Shvo catalyst.
concerted, outer-sphere reduction in which the substrate does
Our group is interested in exploring the ability of the Shvo
catalyst to deliver reagents other than dihydrogen by ligand-metal
bifunctional catalysis.13 We have limited our attention to boron-
substituted analogues of the Shvo catalyst, [2,5-Ph2-3,4-Tol2(η5-
C4COH)Ru(CO)2B(OR)2] (RuB(OR)2OH, I, Figure 1) and [2,5-
Ph2-3,4-Tol2(η5-C4COB(OR)2)Ru(CO)2H] (RuHOB(OR)2, II),
due to the synthetic utility of the proposed boron-containing
organic products.14-17 Initial studies have focused on the
RuHOB(OR)2 complex (II) to determine the effectiveness of
boron as a surrogate for the acidic hydrogen of the Shvo catalyst.
We herein report the stoichiometric and catalytic reactivity of
[2,5-Ph2-3,4-Tol2(η5-C4COBpin)Ru(CO)2H](RuHOBpin, Bpin )
4,4,5,5-tetramethyl-1,3,2-dioxaborolane), a boron-substituted
analogue of the Shvo catalyst, in the hydroboration of aldehydes
and imines.
not coordinate to the metal prior to the addition of dihydrogen
(step a). The metal-mediated reaction of dihydrogen with a
carbonyl compound involves the addition of the metal-based
hydride hydrogen (red) to the carbonyl carbon and the addition
of the ligand-based acidic hydrogen (blue) to the carbonyl
oxygen simultaneously.
* To whom correspondence should be addressed. E-mail: clark@
chem.wwu.edu.
† Western Washington University.
‡ University of WisconsinsMadison.
(1) For reviews of ligand-metal bifunctional catalysis, see: (a) Noyori,
R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40–73. (b) Noyori, R.;
Kitamura, M.; Ohkuma, T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5356–
5362. (c) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. ReV.
2004, 248, 2201–2237. (d) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol.
Chem. 2006, 4, 393–406.
(2) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics
1985, 4, 1459–1461.
(3) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem.
Soc. 1986, 108, 7400–7402.
(4) Menashe, N.; Shvo, Y. Organometallics 1991, 10, 3885–3891.
(5) Menashe, N.; Salant, E.; Shvo, Y. J. Organomet. Chem. 1996, 514,
97–102.
(6) Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana,
M. J. Am. Chem. Soc. 2001, 123, 1090–1100.
The desired boron-substituted analogue of the Shvo catalyst
(complex II, Figure 1) requires a balance between a complex
that has sufficient Lewis acidity to promote hydroboration and
one that is stable toward hydrolysis or thermal decomposition.
Pinacolato-substituted boronate ester (Bpin) is known to be
(7) Casey, C. P.; Bikzhanova, G. A.; Cui, Q.; Guzei, I. A. J. Am. Chem.
Soc. 2005, 127, 14062–14071.
(8) Casey, C. P.; Johnson, J. B. J. Am. Chem. Soc. 2005, 127, 1883–
1894.
(13) For examples of additional ligand-metal bifunctional catalysts that
employ functional groups other than hydrogen, see: (a) Watanabe, M.;
Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2003, 125, 7508–7509. (b)
Watanabe, M.; Ikagawa, A.; Wang, H.; Murata, K.; Ikariya, T. J. Am. Chem.
Soc. 2004, 126, 11148–11149. (c) Shibasaki, M.; Yoshikawa, N. Chem.
ReV. 2002, 102, 2187–2209. (d) Shibasaki, M.; Matsunaga, S. Chem. Soc.
ReV. 2006, 35, 269–279.
(9) Casey, C. P.; Johnson, J. B.; Singer, S. W.; Cui, Q. J. Am. Chem.
Soc. 2005, 127, 3100–3109.
´
(10) Samec, J. S. M.; Ell, A. H.; Åberg, J. B.; Privalov, T.; Eriksson,
L.; Ba¨ckvall, J.-E. J. Am. Chem. Soc. 2006, 128, 14293–14305.
(11) Casey, C. P.; Clark, T. B.; Guzei, I. A. J. Am. Chem. Soc. 2007,
129, 11821–11827.
(12) Casey, C. P.; Beetner, S. E.; Johnson, J. B. J. Am. Chem. Soc. 2008,
130, 2285–2295.
(14) Matteson, D. S. Chem. ReV. 1989, 89, 1535–1551.
(15) Matteson, D. S. Tetrahedron 1998, 54, 10555–10607.
(16) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483.
(17) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Am. Chem.
Soc. 2002, 124, 8001–8006.
10.1021/om801228m CCC: $40.75
2009 American Chemical Society
Publication on Web 03/19/2009