8718
S. Padakanti et al. / Tetrahedron Letters 43 (2002) 8715–8719
find wide usage both in organic and medicinal chem-
istry.
13. Monflier, E.; Pellegrini, S.; Mortreux, A.; Petit, F. Tetra-
hedron Lett. 1991, 32, 4703–4704.
14. Takabe, K.; Yoda, H.; Tanaka, M.; Sugimoto, M.; Ish-
ioka, T.; Miyazaki, A. Jpn. Kokai Tokkyo Koho JP
02218672, 31 Aug 1990, 5 pp. Chem. Abstr. 114:42558.
15. Lardelli, G.; Dijkstra, P.; Harkes, D.; Boldingh, J. Rec.
Trav. Chim. 1966, 85, 43.
Acknowledgements
16. Black, C.; Grimm, E.; Wang, Z.; Leger, S. World Patent
WO 9636623, 21 Nov 1996, 109 pp., Chem. Abstr.
126:89250.
The authors would like to thank Dr. A. Venkateswarlu,
Dr. R. Rajagopalan and Professor J. Iqbal for their
constant encouragement and the Analytical Depart-
ment for spectral support.
17. (a) Pal, M.; Rao, V. V.; Srinivas, P.; Murali, N.; Akhila,
V.; Premkumar, M.; Rao, C. S.; Misra, P.; Ramesh, M.;
Rao, Y. K. Indian J. Chem. 2002, in press; (b) Srinivas,
P.; Pal, M.; Rao, Y. K. Synth. Commun., submitted.
18. Pattabiraman, V. R.; Padakanti, P. S.; Veeramaneni, V.
R.; Pal, M.; Yeleswarapu, K. R. Synlett 2002, 947–951.
19. Pal, M.; Rao, V. V.; Rao, Y. K. Presented at the sympo-
sium on Current Perspectives in Organic Chemistry
(CPOC-2002), Indian Association for the Cultivation of
Science, Kolkata, India, 24–25 January, 2002; Paper
number 6.
References
1. (a) He, H.; Kulanthaivel, P.; Baker, B. J. Tetrahedron
Lett. 1994, 35, 7189–7192; (b) Schmidt, E. W.; Faulkner,
D. Tetrahedron Lett. 1996, 37, 3951–3954; (c) Gunasek-
era, S. P.; McCarthy, P. J.; Kelly-Borges, M.; Lobkovsky,
E.; Clardy, J. J. Am. Chem. Soc. 1996, 118, 8759–8760.
2. (a) Lee, G. C. M.; Syage, E. T.; Harcourt, D. A.; Holmes,
J. M.; Grast, M. E. J. Org. Chem. 1991, 56, 7007–7014;
(b) Doherty, A. M. Drug Discovery Today 1996, 1, 60–70.
3. (a) de Silva, E. D.; Scheuer, P. J. Tetrahedron Lett. 1980,
21, 1611–1614; (b) Potts, B. C. M.; Faulkner, D. J.; De
Carvalho, M. S.; Jacobs, R. S. J. Am. Chem. Soc. 1992,
114, 5093–5100; (c) Doherty, A. M.; Patt, W. C.;
Edmunds, J. J.; Berryman, K. A.; Reisdorph, B. R.;
Plummer, M. S.; Shahripour, A.; Lee, C.; Cheng, X.-M.;
Walker, D. M.; Haleen, S. J.; Keiser, J. A.; Flynn, M. A.;
Welch, K. M.; Hallak, H.; Taylor, D. G.; Reynolds, E. E.
J. Med. Chem. 1995, 38, 1259–1263.
4. (a) Suzuki, N.; Nakaniski, J. Chemosphere 1990, 21,
387–392; (b) Jinqu, Z.; Zhen, Z.; Huixian, Z.; Minmin, Y.
Synth. Commun. 1995, 25, 3401–3405.
5. Takabe, K.; Yoda, H.; Iwabuchi, M.; Tanaka, M. Jpn.
Kokai Tokkyo Koho JP 02218673, 31 Aug 1990, 5 pp.
Chem. Abstr. 114:61913.
6. Takabe, K.; Yoda, H. Jpn. Kokai Tokkyo Koho JP
02311471, 27 Dec 1990, 5 pp. Chem. Abstr. 115:29102.
7. Black, C.; Grimm, E.; Wang, Z.; Leger, S. World Patent
WO 9636623 A1, 21 Nov 1996, Chem. Abstr. 126:89250.
8. Pal, M.; Rao, Y. K.; Rajagopalan, R.; Misra, P.; Kumar,
P. M.; Rao, C. S. World Patent WO 01/90097, 29 Nov
2001, Chem. Abstr. 2002, 136, 5893.
1
20. All new compounds were characterized by H NMR, IR,
Mass and C, H, N microanalyses; some selected analyti-
cal data are listed below: Spectral data for 6: mp 94–95°C
(1:9 EtOAc–hexane); 1H NMR (200 MHz, CDCl3) l
7.50–7.26 (m, 10H, ArH), 2.09–2.02 (m, 2H, CH
6
2CH3),
0.87 (t, J=7.4 Hz, 3H, CH2CH3
6
); IR (KBr, cm−1) 3319
(bs, OH), 1739 (CꢀO). Mass (EI) m/z 280 (M+, 11), 262
(93), 178 (100). Elemental analysis found: C, 77.24; H,
5.73; C18H16O3 requires C, 77.13; H, 5.75%.
Spectral data for 7: mp 121–122°C (2:8 EtOAc–hexane);
1H NMR (200 MHz, CDCl3) l 7.56–7.0 (m, 8H, ArH),
2.48 (s, 3H, SCH
J=7.3 Hz, 3H, CH2CH3
6
3), 2.05–1.86 (m, 2H, CH2
6
CH3), 0.87 (t,
6
); IR (KBr, cm−1) 3455 (bs, OH),
1741 (CꢀO). Mass (EI) m/z 344 (M+, 6), 326 (100).
Elemental analysis found: C, 66.30; H, 4.97; C19H17FO3S
requires C, 66.26; H, 4.98%.
1
Spectral data for 12: mp: 227–229°C (MeOH); H NMR
(200 MHz, CDCl3) l 7.41–7.25 (m, 5H, ArH), 7.08 (s,
1H, ArH), 6.89 (d, J=7.89 Hz, 1H, ArH), 3.31–2.90 (m,
3H, one is D2O exchangeable, OH and CH2), 2.80–2.60
(m, 1H, H
2.25–2.10 (m, 1H, H
6 -CH-), 2.55 (s, 3H, SCH3), 2.35 (s, 3H, CH3),
6
-CH-); IR (KBr, cm−1) 3329, 1742.
Mass (CI, i-butane) m/z 339 (M+, 43), 321 (100). Elemen-
tal analysis found: C, 70.89; H, 5.37; C20H18O3S requires
C, 70.98; H, 5.36%.
9. (a) Halpin, R. A.; Geer, L. A.; Zhang, K. E.; Marks, T.
M.; Dean, D. C.; Jones, A. N.; Melillo, D.; Doss, G.;
Vyas, K. P. Drug Metab. Dispos. 2000, 28, 1244–1254; (b)
Nicoll-Griffith, D. A.; Yergey, J. A.; Trimble, L. A.;
Silva, J. M.; Li, C.; Chauret, N.; Gauthier, J. Y.; Grimm,
E.; Leger, S.; Roy, P.; Therien, M.; Wang, Z.; Prasit, P.;
Zamboni, R.; Young, R. N.; Brideau, C.; Chan, C.-C.;
Mancini, J.; Riendeau, D. Bioorg. Med. Chem. Lett.
2000, 10, 2683–2686.
21. a-Bromoketones were prepared via Friedel–Crafts
acylation of the appropriate arene followed by bromina-
tion of the resulting ketone according to the similar
procedure described in the literature. See for example: (a)
Giordano, C.; Casagrande, F. Ger. Offen. DE 3006277, 4
Sep 1980, 26 pp, Chem. Abstr. 94:30372; (b) Carter, J. S.;
Rogier, D. J.; Graneto, M. J.; Seibert, K.; Koboldt, C.
M.; Zhang, Y.; Talley, J. Bioorg. Med. Chem. Lett. 1999,
9, 1167–1170.; (c) Almansa, C.; de Arriba, A. F.; Caval-
canti, F. L.; Gomez, L. A.; Miralles, A.; Merlos, M.;
Garcia-Rafanell, J.; Forn, J. J. Med. Chem. 2001, 44,
350–361.
22. Mechanistically, the reaction proceeds via in situ genera-
tion of the phenacyl ester followed by an intramolecular
aldol-type condensation leading to the formation of the
corresponding furanone, which subsequently can react
with molecular oxygen to yield the product. See for
example: Ref. 18.
10. Kernan, M. R.; Faulkner, D. J. J. Org. Chem. 1988, 53,
2773–2776.
11. (a) Pommier, A.; Kocienski, P. J. Chem. Commun. 1997,
1139–1140; (b) Soriente, A.; De Rosa, M.; Scettri, A.;
Sodano, G. Tetrahedron Lett. 1996, 37, 8007–8010; (c)
Piers, E.; Wai, J. S. M. Can. J. Chem. 1994, 72, 146–157;
(d) Katsumura, S.; Inagaki, Y.; Tsujino, K.; Han, Q.
Chem. Lett. 1993, 351–352.
12. Boukouvalas, J.; Lachance, N. Synlett 1998, 31–32.