ruthenium-catalyzed ortho selective arylation of arylpyridines
with arylstannanes.6a We subsequently reported the RuH2(CO)-
(PPh3)3-catalyzed arylation of aromatic ketones with aryl-
boronates.7a,b To explore the synthetic utility of our protocol of
C-H/organoboronate coupling to a variety of organoboronates,
we examined the ruthenium-catalyzed alkylation of aromatic
ketones using alkenylboronates. We wish to report a new aspect
of the regioselective alkenylation of aromatic ketones with
alkenylboronates via cleavage of C-H bonds using RuH2(CO)-
(PPh3)3 as a catalyst.
Regioselective Alkenylation of Aromatic Ketones
with Alkenylboronates Using a RuH2(CO)(PPh3)3
Catalyst via Carbon-Hydrogen Bond Cleavage
Satoshi Ueno,‡ Naoto Chatani,‡ and Fumitoshi Kakiuchi*,†
Department of Chemistry, Faculty of Science and Technology,
Keio UniVersity, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama
223-8522, Japan, and Department of Applied Chemistry,
Faculty of Engineering, Osaka UniVersity, Suita,
Osaka 565-0871, Japan
In our previous studies, which focused on the ruthenium-
catalyzed arylation of aromatic ketones with arylboronates (Ar-
B(OR)2), the use of the acceptor of the H-B(OR)2 species was
found to be essential for attaining high yields in the coupling
reaction. To this end, we discovered that pinacolone can function
as an efficient acceptor of the HB(OR)2 species. As a result of
this finding, pinacolone was used as a solvent in this study.
ReceiVed February 1, 2007
(2) (a) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778-
779. (b) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N. Nature 1993, 366, 529-531. (c) Lim, Y.-G.; Kim,
Y. H.; Kang, J.-B. J. Chem. Soc., Chem. Commun. 1994, 2267-2268. (d)
Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani,
N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62-83. (e) Guari, Y.; Sabo-
Etienne, S.; Chaudret, B. J. Am. Chem. Soc. 1998, 120, 4228-4229. (f)
Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 6616-6623.
(g) Harris, P. W. R.; Rickard, C. E. F.; Woodgate, P. D. J. Organomet.
Chem. 2000, 601, 172-190. (h) Gupta, S. K.; Weber, W. P. Macromolecules
2002, 35, 3369-3373. (i) Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J.
Am. Chem. Soc. 2004, 126, 7192-7193.
(3) (a) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1979, 339-
342. (b) Du¨rr, U.; Kisch, H. Synlett 1997, 1335-1341. (c) Kakiuchi, F.;
Yamamoto, Y.; Chatani, N.; Murai, S. Chem. Lett. 1995, 681-682. (d)
Harris, P. W. R.; Rickard, C. E. F.; Woodgate, P. D. J. Organomet. Chem.
1999, 589, 168-179. (e) Satoh, T.; Nishinaka, Y.; Miura, M.; Nomura, M.
Chem. Lett. 1999, 615-616. (f) Lim, Y. G.; Lee, K. H.; Koo, B. T.; Kang,
J.-B. Tetrahedron Lett. 2001, 42, 7609-7612. (g) Kakiuchi, K.; Uetsuhara,
T.; Tanaka, Y.; Chatani, N.; Murai, S. J. Mol. Catal. A 2002, 182-183,
511-514. (h) Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong, J. B.; Jun, C. H.
Org. Lett. 2003, 5, 2759-2761. (i) Tsukada, N.; Mitsuboshi, T.; Setoguchi,
H.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 12102-12103. (j) Kuninobu,
Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128,
202-209.
(4) (a) Hong, P.; Yamazaki, H. Chem. Lett. 1979, 1335-1336. (b) Moore,
E. J.; Pretzer, W. R.; O’Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.;
Grimmer, S. S J. Am. Chem. Soc. 1992, 114, 5888-5890. (c) Chatani, N.;
Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118, 493-
494. (d) Szewczyk, J. W.; Zuckerman, R. L.; Bergman, R. G.; Ellman, J.
A. Angew. Chem., Int. Ed. 2001, 40, 216-219. (e) Asaumi, T.; Matsuo,
T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004,
69, 4433-4440. (f) Chatani, N.; Uemura, T.; Asaumi, T.; Ie, Y.; Kakiuchi,
F.; Murai, S. Can. J. Chem. 2005, 83, 755-763.
(5) (a) Catellani, M.; Chiusoli, G. P. J. Organomet. Chem. 1985, 286,
C13-C16. (b) Dyker, G. Angew. Chem., Int. Ed. Engl. 1992, 31, 1023-
1025. (c) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1740-1742. (d) Oi, S.; Fukita, S.; Hirata, N.;
Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579-2581. (e)
Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew.
Chem., Int. Ed. 2003, 42, 112-114. (f) Kalyani, D.; Deprez, N. R.; Desai,
L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330-7331. (g) Lane,
B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050-
8057.
The ruthenium-catalyzed alkenylation of C-H bonds with
alkenylboronates has been explored for a series of aromatic
ketones. The coupling reaction of pivalophenone (1) with
2-isopropenyl-5,5-dimethyl[1,3,2]dioxaborinane (2) gave the
corresponding isopropenylation product in 73% yield. In the
case of the reaction of a sterically congested alkenylboronate,
such as 2-methylpropenylboronate (8), the yield was de-
creased slightly. When â-styrylboronates were used, the
corresponding coupling products were obtained in good
yields. The reaction of acetophenone with R-styrylboronate
afforded the corresponding 1:1 coupling product, exclusively.
In recent years, considerable attention has been directed
toward the selective functionalization of unreactive carbon-
hydrogen bonds with the aid of a transition metal catalyst.1 To
date, several types of transformations of C-H bonds have been
reported. Among these, C-C bond formations such as alkyla-
tion,2 alkenylation,3 acylation,4 and arylation5-7 have widely
been studied. In these reactions, three types of protocols have
been published. The first is the addition of C-H bonds to C-C
multiple bonds;2-4 the second involves coupling with organo-
halides;5 and the third involves coupling using organometallic
compounds.6,7 The former two protocols have been the subject
of extensive investigations. The third has great potential as a
synthetic tool, but this is still at a primitive stage of development.
Only two types of coupling reagents have appeared in the
literature.6,7 For example, Oi and co-workers reported the
† Keio University.
‡ Osaka University.
(1) (a) Kakiuchi, F.; Murai, S. In Topics in Organometallic Chemistry;
Murai S., Ed.; Springer-Verlag: Berlin, 1999; Vol. 3, pp 47-79. (b)
Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826-834. (c) Ritleng,
V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731-1770. (d) Labinger,
J. A.; Bercaw, J. E. Nature 2002, 417, 507-514. (e) Miura, M.; Nomura,
M. In Cross-Coupling Reactions; Springer: Berlin, 2002; pp 211-241. (f)
Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077-1101. (g)
Kakiuchi, F.; Chatani, S. In Topics in Organometallic Chemistry; Bruneau,
C., Dixneuf, P. H., Eds.; Springer-Verlag: Berlin, 2004; Vol. 11, pp 45-
79. (h) Godula, K.; Sames, D. Science 2006, 312, 67-72.
(6) (a) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439-2440.
(b) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 78-79.
(7) (a) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem.
Soc. 2003, 125, 1698-1699. (b) Kakiuchi, F.; Matsuura, Y.; Kan, S.;
Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936-5945. (c) Park, Y. J.; Jo,
E-A.; Jun, C.-H. Chem. Commun. 2005, 1185-1187. (d) Chen, X.; Goodhue,
C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634-12635. (e) Pastine,
S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220-
14221.
10.1021/jo070182g CCC: $37.00 © 2007 American Chemical Society
Published on Web 04/04/2007
3600
J. Org. Chem. 2007, 72, 3600-3602