3
2
3
93
85
18
98
19
20
53
92
4
5
98
96
a Unless otherwise noted, all reactions were carried out using 6 (0.25
mmol), NHC-BH3 (0.20 mmol), and FeCl3 (0.15-0.25 mmol) in DCM (1.0
mL) at rt for 30 min-1 h.
b Isolated yield.
In summary, we have demonstrated an efficient and
convenient approach for reduction of ketones by NHC-BH3 in the
presence of anhydrous FeCl3. This strategy tolerated a wide range
of ketones and good to excellent yields were achieved. As NHC-
BH3 often is so stable and easy to prepare, handle, react, and
separate from target products, which made NHC-BH3 a valuable
alternative reductive reagent. Further explorations of new chiral
NHC-BH3 complex and asymmetric transformations are in
progress.
6
7
8
90
98
65
Acknowledgments
The authors thank Professor Zhihua Sun for helpful
discussions and are grateful for financial support from the
Scientific Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry and the students
Innovation Program in Shanghai University of Engineering
Science (15KY0404).
98
dr:19/1
9
10
11
90
72
References and notes
1.
Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie,Y.; King, R. B.;
Schaefer, H. F.; Schleyer, P. V. R.; Robinson, G. H. J. Am. Chem. Soc.
2007, 129, 12412-12413.
12
13
98
2.
For reviews, see: (a) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.;
Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2011,
50, 10294–10317. (b) Lacote, E.; Curran, D. P.; Lalevee, J. Chimia,
2012, 66, 382-385.
3.
For selected examples, see: (a) Ueng, S.-H.; MakhloufBrahmi, M.;
Derat, É .; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J.
Am. Chem. Soc. 2008, 130, 10082–10083. (b) Ueng, S.-H.; Solovyev,
A.; Yuan, X.; Geib, S. J.; Fensterbank, L.; Lacôte, E.; Malacria, M.;
Newcomb, M.; Walton, J. C.; Curran, D. P. J. Am. Chem. Soc. 2009,
131, 11256–11262. (c) Walton, J. C.; Makhlouf Brahmi, M.;
Fensterbank, L.; Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.;
Solovyev, A.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 2350–2358.
(d) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P.
Org. Lett. 2010, 12, 3002−3005. (e) Ueng, S.-H.; Fensterbank, L.;
Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9,
3415−3420. (f) Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am.
Chem. Soc. 2012, 134, 5669-5674. (g) Pan, X.; Vallet, A.-L.; Schweizer,
S.; Dahbi, K.; Delpech, B.; Blanchard, N.; Graff, B.; Geib, S. J.; Curran,
D. P.; Lalevée, J.; Lacôte, E. J. Am. Chem. Soc. 2013, 135, 10484–
10491. (h) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P.
Advanced Synthesis & Catalysis 2013, 355, 3522-3526. (i) Kawamoto,
T.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2015, 137, 8617-8622.
(j) Tambutet, G.; Guindon, Y. J. Org. Chem. 2016, 81, 11427-11431.
(a) Lee, K. S.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2009, 131, 7253–7255. (b) Chu, Q.; Makhlouf Brahmi, M.; Solovyev,
A.; Ueng, S.-H.; Curran, D.; Malacria, M.; Fensterbank, L.; Lacôte, E.
Chem.Eur. J. 2009, 15, 12937−12940. (c) Solovyev, A.; Chu, Q.; Geib,
S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am.
82
16
14
15
95
95
68
dr>99/1
16
17
4.
96