1919.2(9) Å3, Z = 4, Dcalc = 1.265 g cm21, m(MoKa) = 21.45 cm21. 3091
Unique reflections with 2q @ 50.0° were collected at 170 K. Of these 2939
with I > 2.0s(I) were used for R1 calculation. The structure was solved by
direct methods. The non-hydrogen atoms were refined anisotropically.
Hydrogen atoms were included but not refined. R1 = 0.064, R = 0.133, Rw
= 0.170. CCDC 193389.
Crystal data for (E)-9: C39H62P2, orthorhombic, space group P212121
(#19), a = 15.398(2), b = 23.597(5), c = 10.236(2) Å, V = 3719(1) Å3,
Z = 4, Dcalc = 1.059 g cm21, m(MoKa) = 1.40 cm21. 3205 Unique
reflections with 2q @ 50.0° were collected at 173 K. Of these 2997 with I
> 2.0s(I) were used for R1 calculation. The structure was solved by direct
methods. The non-hydrogen atoms were refined anisotropically. Hydrogen
atoms were included but not refined. R1 = 0.062, R = 0.134, Rw = 0.139.
CCDC 193025.
data in CIF or other electronic format.
Fig. 2 Molecular structure of (E)-9, showing the atomic labelling scheme
with thermal ellipsoids (30% probability). Some selected bond lengths (Å)
and angles (°): P(1)–P(2), 2.039(2); P(1)–C(1), 1.861(4); P(2)–C(22),
1.861(4); P(2)–P(1)–C(1), 101.4(1); P(1)–P(2)–C(22), 97.9(1).
1 As a review, see: J. Escudié, H. Ranaivonjatovo and L. Rigon, Chem.
Rev., 2000, 100, 3639.
2 G. E. Miracle, J. L. Ball, D. R. Powell and R. West, J. Am. Chem. Soc.,
1993, 115, 11598.
3 (a) B. E. Eichler, D. R. Powell and R. West, Organometallics, 1998, 17,
2147; (b) N. Tokitoh, K. Kishikawa and R. Okazaki, Chem. Lett., 1998,
811.
4 (a) M. Yoshifuji, K. Toyota, K. Shibayama and N. Inamoto, Tetra-
hedron Lett., 1984, 25, 1809; (b) M. Yoshifuji, S. Sasaki and N.
Inamoto, Tetrahedron Lett., 1989, 30, 839; (c) M. Yoshifuji, H.
Yoshimura and K. Toyota, Chem. Lett., 1990, 827.
5 (a) G. Märkl, H. Sejpka, S. Dietl, B. Nuber and M. L. Ziegler, Angew.
Chem., Int. Ed. Engl., 1986, 25, 1003; (b) M. Yoshifuji, K. Toyota, H.
Yoshimura, K. Hirotsu and A. Okamoto, J. Chem. Soc., Chem.
Commun., 1991, 124.
3-(2,4,6-triisopropylphenyl)-1,3-diphosphaallene resulted in
formation of the corresponding dimer.18
Finally, 8 was converted to the first unsymmetrically
substituted metal-free 1,4-diphosphabutatriene, in a similar
manner to that reported by Märkl and Kreitmeier.10a Reaction of
Mes*PNCNC(Li)Tms with 8 in THF followed by treatment with
KF and 18-crown-6 under refluxing toluene gave a mixture of
(E)-12 and (Z)-12 [4+1 ratio]. After column chromatographic
treatment (SiO2–hexane), (E)-12 was isolated in 12% yield as
yellow solid [MS m/z 616 (M+)]. 13C{1H} NMR (100 MHz)
spectrum of (E)-12 in CDCl3 showed signals at d = 192.1 (dd,
1JPC = 40.5 Hz and 2JPC = 24.4 Hz) and 192.5 (dd, 1JPC = 40.6
Hz and 2JPC = 22.5 Hz), due to the cumulene carbons.
Table 1 shows 31P NMR chemical shifts and spin–spin
coupling constants (JPP) for 9, 11, 12 together with those for
Mes*PN(C)nNP[W(CO)5]Mes* (13: n = 0,19 14: n = 1,20 15: n
= 210c), and Mes*PNCH–CHNPMes* (16).21 The 3JPP for (E)-
6 M. Bouslikhane, H. Gornitzka, H. Ranaivonjatovo and J. Escudié,
Organometallics, 2002, 21, 1531.
7 (a) M. Yoshifuji, K. Toyota and N. Inamoto, J. Chem. Soc., Chem.
Commun., 1984, 689; (b) H. H. Karsch, F. H. Köhler and H.-U.
Reisacher, Tetrahedron Lett., 1984, 25, 3687; (c) R. Appel, P. Fölling,
B. Josten, M. Siray, V. Winkhaus and F. Knoch, Angew. Chem., Int. Ed.
Engl., 1984, 23, 619; (d) M. Yoshifuji, S. Sasaki, T. Niitsu and N.
Inamoto, Tetrahedron Lett., 1989, 30, 187; (e) M. Yoshifuji, S. Sasaki
and N. Inamoto, J. Chem. Soc., Chem. Commun., 1989, 1732; (f) M.
Gouygou, C. Tachon, R. El Ouatib, O. Ramarijaona, G. Etemad-
Moghadam and M. Koenig, Tetrahedron Lett., 1989, 30, 177.
8 (a) O. I. Kolodiazhnyi, Tetrahedron Lett., 1982, 23, 4933; (b) R. Appel
and W. Paulen, Angew. Chem., Int. Ed. Engl., 1983, 22, 785; (c) L.
Rigon, H. Ranaivonjatovo, J. Escudié, A. Dubourg and J.-P. Declercq,
Chem. Eur. J., 1999, 5, 774; (d) H. Ramdane, H. Ranaivonjatovo, J.
Escudié, S. Mathieu and N. Knouzi, Organometallics, 1996, 15, 3070;
(e) H. Ranaivonjatovo, H. Ramdane, H. Gornitzka, J. Escudié and J.
Satgé, Organometallics, 1998, 17, 1631.
2
and (Z)-12 are larger than the JPP value for 11, due to the p-
conjugation of the two phosphorus–carbon double bonds in the
–PNCNCNP– array of 12, while the p systems in the –PNCNP–
moiety of 11 is perpendicular. These 3JPP values in 12 are even
3
larger than JPP for a 1,4-diphosphabutadiene 16. Coupling
constants for the tungsten complexes 14 and 15 are larger than
those for the compounds 11 and 12, respectively. In contrast, the
1JPP value for the tungsten complexes 13 is smaller than that for
the diphosphene (E)-9, probably because the extreme steric
congestion in 13 might affect the conformation.
Table 1 31P NMR data of some unsymmetrical low-coordinated phosphorus
compounds
9 M. Bouslikhane, H. Gornitzka, J. Escudié, H. Ranaivonjatovo and H.
Ramdane, J. Am. Chem. Soc., 2000, 122, 12880.
10 (a) G. Märkl and P. Kreitmeier, Angew. Chem., Int. Ed. Engl., 1988, 27,
1360; (b) M. Yoshifuji, K. Toyota and H. Yoshimura, Chem. Lett., 1991,
491; (c) S. Ito, K. Toyota and M. Yoshifuji, J. Organomet. Chem., 1998,
553, 135.
11 H. Grützmacher, S. Freitag, R. Herbst-Irmer and G. S. Sheldrick,
Angew. Chem., Int. Ed. Engl., 1992, 31, 437.
12 (a) M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J.
Am. Chem. Soc., 1981, 103, 4587; (b) M. Yoshifuji, I. Shima, N.
Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1982, 104,
6167.
13 M. Yoshifuji, J. Organomet. Chem., 2000, 611, 210, and references
cited therein.
Compound
d(PA)a
d(PB)a
JPP /Hz
(E)-9
11
487.4
140.8
174.6
168.5
375.4
132.8
105.3
243.1
497.7
145.5
182.8
173.9
486.3
151.9
181.5
284.5
581.3
23.5
257.1
294.3
561.5
39
(E)-12
(Z)-12
13b
14c
15d
315.1
188
(E,Z)-16e
a In CDCl3, relative to external 85% H3PO4. b Data taken from Ref. 19.
c Data taken from Ref. 20b. d Data taken from Ref. 10c. e Data taken from
Ref. 21.
14 M. Yoshifuji, M. Nakazawa, T. Sato and K. Toyota, Tetrahedron, 2000,
56, 43.
15 F. Vögtle, Chem. Ber., 1969, 102, 1784.
16 M. Yoshifuji, K. Shibayama, N. Inamoto, T. Matsushita and K.
Nishimoto, J. Am. Chem. Soc., 1983, 105, 2495.
17 C. K. Johnson, Oak Ridge National Laboratory Report, ORNL-TM-
5138, Oak Ridge, TN, 1976.
18 R. Appel and F. Knoll, Adv. Inorg. Chem., 1989, 33, 259.
19 M. Yoshifuji, K. Toyota, T. Sato and N. Inamoto, Sci. Rep., Tohoku
Univ., Ser. 1, 1990, 73, 1.
20 (a) M. Yoshifuji, K. Shibayama, T. Hashida, K. Toyota, T. Niitsu, I.
Matsuda, T. Sato and N. Inamoto, J. Organomet. Chem., 1986, 311,
C63; (b) C. A. Akpan, P. B. Hitchcock, J. F. Nixon, M. Yoshifuji, T.
Niitsu and N. Inamoto, J. Organomet. Chem., 1988, 338, C35.
21 R. Appel, J. Hünerbein and N. Siabalis, Angew. Chem., Int. Ed. Engl.,
1987, 26, 779.
This work was supported in part by the Grants-in-Aid for
Scientific Research (Nos. 13304049, 14044012, and 13640522)
from the Ministry of Education, Culture, Sports, Science and
Technology, Japan.
Notes and references
‡ The geometries were determined based on vicinal spin–spin coupling
constants between the vinyl protons: in (Z,Z)-6a, 3J = 11.2 Hz, whereas in
(E,Z)-6a, 3J = 16.0 Hz (E) and 11.2 Hz (Z).
§
Crystal data for 7a: C21H33Br, monoclinic, space group P21/n (#14), a
= 11.387(2), b = 10.989(3), c = 15.757(5) Å, b = 103.25(3)°, V =
CHEM. COMMUN., 2002, 3012–3013
3013