10.1002/chem.202000703
Chemistry - A European Journal
COMMUNICATION
Brown, B. Singaram, Acc. Chem. Res., 1988, 21, 287; c) D. G. Hall, in
Boronic Acids (Ed.: D. G. Hall), Wiley-VCH, Wein-heim, 2006, 1; d) G.
W. Kabalka, R. C. Marks, J. Organomet. Chem., 1993, 457, 25.
For selected examples, see: a) D. Noh, H. Chea, J. Ju, J. Yun, Angew.
Chem. Int. Ed., 2009, 48, 6062; b) S. M. Smith, J. M. Takacs, J. Am.
Chem. Soc., 2010, 132, 1740; c) Y. Lee, A. H. Hoveyda, J. Am. Chem.
Soc., 2009, 131, 3160; d) X. Feng, H. Jeon, J. Yun, Angew. Chem. Int.
Ed., 2013, 52, 3989; e) H. Lee, B. Y. Lee, J. Yun, Org. Lett., 2015, 17,
764; f) Y. Sasaki, C. Zhong, M. Sawamura, H. Ito, J. Am. Chem. Soc.,
2010, 132, 1226; g) Rosa. Corberµn, N. W. Mszar, A. H. Hoveyda,
Angew. Chem. Int. Ed., 2011, 50, 7079; h) A. G. Karatjas, E. Vedejs, J.
Org. Chem., 2008, 73, 9508.
chiral compounds (Scheme 2). For example, the product 2a
could be converted to (S)-2-phenylpropan-1-ol which is the
synthetic intermediate of chiral aldehyde and chiral acid, by
oxidation with NaBO3 in high yields and without any loss of
enantioselectivity.[14] The boronates 2a could also be used as a
coupling reagent and successfully transformed into the
compound 5 with high enantioselectivities.[15] In addition, the
product 4a could also be converted to chiral secondary amine,
which is extremely important building blocks present in a number
of biologically active molecules, natural products and
pharmaceuticals.[3, 16]
[2]
[3]
[4]
a) D. S. Matteson,; D. Majumdar, J. Am. Chem. Soc., 1980, 102, 7588;
For reviews see: b) D. S. Matteson, Chem. Rev., 1989, 89, 1535.
a) J. L. Stymiest, G. Dutheuil, A. Mahmood, V. K. Aggarwal, Angew.
Chem. Int. Ed., 2007, 6, 7491; For a review, see: c) S. P. Thomas, R. M.
French, V. Jheengut, V. K. Aggarwal, Chem. Rec. 2009, 9, 24.
For examples, see: a) S. Mun, J.-E. Lee, J. Yun, Org. Lett. 2006, 8,
4887; b) H. Ito, S. Ito, Y. Sasaki, K. Matsuura, M. Sawamura, J. Am.
Chem. Soc. 2007, 129, 14856; c) H. Ito, S. Kunii, M. Sawamura, Nat.
Chem. 2010, 2, 972; d) E. Yamamoto, Y. Takenouchi, T. Ozaki, T. Miya,
H. Ito, J. Am. Chem. Soc. 2014, 136, 16515; e) Kubota, K.; Yamamoto,
E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420. f) D. Wang, P. Cao, B.
Wang, T. Jia, Y. Lou, M. Wang, J. Liao, Org. Lett. 2015, 17, 2420; g) D.
Nishikawa, K. Hirano, M. Miura, Org. Lett. 2016, 18, 4856; h) W. J.
Jang, S. M. Song, J. H. Moon, J. Y. Lee, J. Yun, J. Am. Chem. Soc.
2017, 139, 13660; i) D. Kong, S. Han, R. Wang, M. Li, G. Zi, G. Hou, Chem.
Sci. 2017, 8, 4558; j) D. Kong, S. Han, G. Zi, G. Hou, J. Zhang, J. Org. Chem.
2018, 83, 1924; k) X. Li, C. Wang, J. Song, Z. Yang, G. Zi, G. Hou, J. Org.
Chem. 2019, 84, 8638; l) S. Han, X. Shen, D. Kong, G. Zi, G. Hou, J. Zhang, J.
Org. Chem. 2019, 84, 4318.
[5]
[6]
For reviews, see: a) J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 2018, 36,
1075; b) J. Chen, Z. Lu, Org. Chem. Front. 2018, 5, 260 and references
cited therein; For selected examples, see: c) A.-M. Carroll, T. P.
O’Sullivan, P. J. Guiry, Adv. Synth. Catal. 2005, 347, 609; d) N. Hu, G.
Zhao, Y. Zhang, X. Liu, G. Li, W. Tang, J. Am. Chem. Soc. 2015, 137,
6746; e) S. Chakrabarty, J. M. Takacs, J. Am. Chem. Soc. 2017, 139,
6066; f) C. Mazet, D. Gerard, Chem. Commun. 2011, 47, 298; g) L.
Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am. Chem. Soc. 2014, 136,
15501; h) H. Zhang, Z. Lu, ACS Catal. 2016, 6, 6596; i) X. Chen, Z.
Cheng, Z. Lu, ACS Catal. 2019, 9, 4025.
Scheme 2. Transformation of the Hydrogenation Products 2a and 4a.
[7]
[8]
M. Ueda, A. Saitoh, N. Miyaura, J. Organomet. Chem., 2002, 642, 145.
a) J. B. Morgan, J. P. Morken, J. Am. Chem. Soc., 2004, 126, 15338; b)
W. J. Moran, J. P. Morken, Org. Lett., 2006, 8, 2413.
[9]
a) J. Mazuela, P.-O. Norrby, P. G. Andersson, O. Pàmies, M. Diéguez,
J. Am. Chem. Soc., 2011, 133, 13634; b) M. Biosca, A. Paptchikhine, O.
Pàmies, P. G. Andersson, M. Diéguez, Chem. Eur. J., 2015, 21, 3455;
c) J. Margalef, X. Caldentey, E. A. Karlsson, M. Coll, J. Mazuela, O.
Pàmies, M. Diéguez, M. A. Pericàs, Chem. Eur. J., 2014, 20, 12201; d)
A. Paptchikhine, P. Cheruku, M. Engman, P. G. Andersson, Chem.
Commun., 2009, 5996; e) M. Coll, O. Pàmies, M. Diéguez, Adv. Synth.
Catal., 2013, 355, 143; f) J. Mazuela, O. Pàmies, M. Diéguez, Adv.
Synth. Catal., 2013, 355, 2569.
In conclusion, we have developed a highly enantioselective
Rh-catalyzed asymmetric hydrogenation of (Z)-α,β-unsaturated
boronates including both β,β-disubstituted and α,β-disubstituted
substrates for synthesis of chiral boronate esters with high
yields and excellent enantioselectivities of up to 98% ee. This
strategy can also be used as an efficient approach to chiral
alcohols, chiral amines, and other significant chiral compounds.
[10] A. Ganić, A. Pfaltz, Chem. Eur. J., 2012, 18, 6724.
[11] Y. Kita, S. Hida, K. Higashihara, H. S. Jena, K. Higashida, K. Mashima,
Angew. Chem. Int. Ed., 2016, 55, 8299.
Acknowledgements
[12] Z. Han, G. Liu, X. Zhang, A. Li, X. Dong, X. Zhang, Org. Lett., 2019, 21,
3923.
We thank the National Natural Science Foundation of China
(Grant Nos. 21672024, 21272026, and 21871029), Beijing
Natural Science Foundation (2182025), and Beijing Municipal
Commission of Education for generous financial support.
[13] a) Q. Yan, M. Liu, D. Kong, G. Zi, G. Hou, Chem. Commun., 2014, 50,
12870; b) Q. Yan, D. Kong, M. Li, G. Hou, G. Zi, J. Am. Chem. Soc.,
2015, 137, 10177; c) Q. Yan, G. Xiao, Y. Wang, G. Zi, Z. Zhang, G.
Hou, J. Am. Chem. Soc. 2019, 141, 1749.
[14] K. Kubota, K. Hayama, H. Iwamoto, H. Ito, Angew. Chem. Int. Ed.,
2015, 54, 8809.
Keywords: Asymmetric hydrogenation • Unsaturated boronate •
[15] A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat.
Chem., 2014, 6, 584.
Chiral boronate • Asymmetric catalysis • Enantioselectivity
[16] W. A. Loughlin, I. D. Jenkins, N. D. Karis,P. C. Healy, Eur. J. Med.
Chem., 2017, 127, 341.
[1]
a) H. C. Brown, G. W. Kramer, A. B. Levy, M. M. Midland, O- rganic
Syntheses Via Boranes; Wiley-Interscience: New York, 1975; b) H. C.
4
This article is protected by copyright. All rights reserved.