Chemistry Letters Vol.32, No.1 (2003)
17
1
2
A. Nakamura, P.-J. Kim, and N. Hagihara, J. Organomet. Chem., 3, 7 (1965).
a) K. K. Joshi, J. Chem. Soc. A, 1966, 594. b) D. Bright and O. S. Mills, Chem.
Commun., 1966, 211.
3
L. Hagelee, R. West, J. Calabrese, and J. Norman, J. Am. Chem. Soc., 101,
4888 (1979).
4
5
6
7
U. Schubert and J. Gronen, Organometallics, 6, 2459 (1987).
¨
A. Maercker and A. Groos, Angew. Chem., Int. Ed. Engl., 35, 210 (1996).
L. Stehling and G. Wilke, Angew. Chem., Int. Ed. Engl., 27, 571 (1988).
M. Iyoda, S. Tanaka, H. Otani, M. Nose, and M. Oda, J. Am. Chem. Soc., 110,
8494 (1988).
8
9
T. Kusumoto and T. Hiyama, Bull. Chem. Soc. Jpn., 63, 3103 (1990).
L. Stehling and G. Wilke, Angew. Chem., Int. Ed. Engl., 24, 496 (1985).
10 a) A. Nakamura, Bull. Chem. Soc. Jpn., 38, 1868 (1965). b) R. O. Angus, Jr.,
M. N. Janakiraman, R. A. Jacobson, and R. P. Johnson, Organometallics, 6,
1909 (1987).
11 Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh, and J. Y. Satoh, J. Am.
Chem. Soc., 113, 9604 (1991).
ꢀ
Figure 1. Molecular structure of 4b; selected bond lengths (A)
and angles (deg).
12 Y. Wakatsuki, H. Yamazaki, N. Kumegawa, and P. S. Johar, Bull. Chem.
Soc. Jpn., 66, 987 (1993).
13 a) Y. Suzuki, R. Hirotani, H. Komatsu, and H. Yamazaki, Chem. Lett., 1999,
1299. b) M. Ogasawara, H. Ikeda, K. Ohtsuki, and T. Hayashi, Chem. Lett.,
2000, 776. c) T. Ohmura, S. Yorozuya, Y. Yamamoto, and N. Miyaura,
Organometallics, 19, 365 (2000).
Hiyama reported that hydrosilation of 1,1,4,4-tetrakis(tri-
methylsilyl)butatriene catalyzed by rhodiumcomplexes gave 1,2-
addition products in which a silyl group attached at the terminal
position.8 When 1 was treated with diphenylsilane in the presence
of a catalytic amount of RhCl(PPh3)3, hydrosilated products were
obtained in moderate yields (Scheme 3).22 Contrary to the
previous results, allenes 5 were obtained as major products. These
have a silyl group at the internal position as a result of 2,1-
addition, while 2,3-addition gave 1,3-dienes 6 as minor products.
Interestingly, 6 is formally an anti-addition product. A reaction of
1a using Ph2SiD2 (97%D) gave deuterated products 7 and 8.
Deuterium was incorporated at C1 in 7 and C3 in 8 (96 and
97%D). It should be noted that D was not attached at the other
carbons. The possibility that (Z)-1 isomerized to 1,3-enyne 9 and
this accepted hydrosilation to give 6 can be ruled out. However, it
is not clear yet whether 6 formed via direct anti-addition of Si–H
on (Z)-1 or syn-addition to (E)-1 that was isomerized from (Z)-1.
Further investigation is now in progress.
14 N. Suzuki, M. Nishiura, and Y. Wakatsuki, Science, 295, 660 (2002).
15 Cumulenylidene complexes are also known, see: M. I. Bruce, Chem. Rev.,
98, 2797 (1998) and the references cited therein.
16 3a: 1H NMR (C6D6, Me4Si) d ¼ À0:14 (s, 18H), 6.71 (d, 3JRh-H ¼ 2:6 Hz,
2H), 7.01–7.13 (m, 18H), 7.90–7.97 (m, 12H). 13C NMR (C6D6, Me4Si)
d ¼ À0:67, 124.34, 127.77 (3JP-C ¼ 5:0 Hz), 129.45, 132.95 (1JP-C
¼
¼
1
2
21:2 Hz), 135.15 (2JP-C ¼ 6:1 Hz), 156.97 (q, JRh-C ¼ 12:9, JP-C
1
3:4 Hz). 31P NMR (C6D6, H3PO4) d ¼ 31:2 (d, JP-Rh ¼ 138:1 Hz). 29Si
3
NMR (C6D6, Me4Si) d ¼ À11:5 (d, JSi-Rh ¼ 3:2 Hz). Anal. Calcd for
C
46H50ClP2RhSi2: C 64.29H 5.86, Found:C 64.72, H5.84. Yield 83% by 1H
NMR (35% isol.).
17 P. J. Stang, M. R. White, and G. Maas, Organometallics, 2, 720 (1983).
18 a) H. Werner, M. Laubender, R. Wiedemann, and B. Windmuller, Angew.
¨
Chem., Int. Ed. Engl., 35, 1237 (1996). b) K. Ilg and H. Werner, Chem.—Eur.
J., 7, 4633 (2001).
19 J.-D. van Loon, P. Seiler, and F. Diederich, Angew. Chem., Int. Ed. Engl., 32,
1187 (1993).
20 4a: 1H NMR (C6D6, Me4Si) d ¼ À0:18 (s, 9H), 0.33 (s, 9H), 5.71 (dd,
5JH-H ¼ 3:0, 3JRh-H ¼ 3:0 Hz, 1H), 6.02 (dd, 5JH-H ¼ 3:0, 3JRh-H ¼ 3:0 Hz,
1H), 7.06 (m, 18H), 7.90 (m, 12H). 13C NMR (C6D6, Me4Si) d ¼ À0:40,
0.40, 116.22, 122.16, 127.66 (3JP-C ¼ 4:5 Hz), 129.69, 131.85 (1JP-C
¼
¼
1
2
21:2 Hz), 135.21 (2JP-C ¼ 5:9 Hz), 154.66 (q, JRh-C ¼ 13:4, JP-C
R
R
1
2
3:7 Hz), 157.07 (q, JRh-C ¼ 15:1, JP-C ¼ 3:9 Hz). 31P NMR (C6D6,
Ph2HSi
1
H3PO4) d ¼ 39:3 (d, JP-Rh ¼ 134:3 Hz). 29Si NMR (C6D6, Me4Si) d ¼
4 mol%
RhCl(PPh3)3
3
3
5a: 43%, 5b: 41%
À4:9 (d, JSi-Rh ¼ 3:7 Hz), À8:0 (d, JSi-Rh ¼ 1:8 Hz). Anal. Calcd for
R
H
R
H
C
46H50ClP2RhSi2: C 64.29, H 5.86, Found: C 64.04, H 5.87. Yield 58% by
+ Ph2SiH2
C C C C
R
in Et2O
rt, 1h
1H NMR (17% isol.).
21 4b: Crystal data: C52H62ClP2RhSi2, fw=943.50, orthorhombic, space
R
1
ꢀ
group = Pna2(1), a ¼ 33:305ð4Þ, b ¼ 11:4630ð12Þ, c ¼ 12:9333ð13Þ A,
a: R = SiMe3
b: R = t-Bu
SiHPh2
ꢀ 3
V ¼ 4937:5ð9Þ A , Z ¼ 4, Dcalcd ¼ 1:269 g/cm3, R ¼ 0:057, Rw ¼ 0:125.
6a: 23%, 6b: 2%
Data were collected on Bruker APEX diffractometer with a CCD area
detector, using graphite monochromated Mo Ka radiation at 110 K. A total
of 37042 reflections was measured. The structure was solved by direct
methods and refined on F2 by full-matrix least-squares techniques. The final
cycle of least-squares refinement was based on 14067 observed reflections
(I ꢂ 2sðIÞ) with 535 variable parameters. The data were deposited in
Cambridge Crystallographic Data Centre (CCDC 191256).
(97%)
D
(96%)
D
SiMe3
R
SiMe3
Me3Si
Me3Si
R
Ph2DSi
SiDPh2
7
8
9
Scheme 3. Hydrosilation of butatrienes catalyzed by Rh complexes.
22 Typically, to a solution of RhCl(PPh3)3 (18.5 mg, 0.02 mmol) in diethyl
ether (0.5 mL) were added 1a (99 mg, 0.5 mmol) and diphenylsilane
(184 mg, 1 mmol). The mixture was stirred at room temperature for 1 h.
Usual workup gave 5a and 6a (Y. 35% and 16% isolated). Yields were
determined by GC. 5a: 1H NMR (C6D6) d ¼ À0:01 (s, 9H), 0.06 (s, 9H),
1.37 (dd, J ¼ 15, 2.8 Hz, 1H), 1.48 (dd, J ¼ 15, 2.8 Hz, 1H), 4.5 (t,
The authors are grateful to Ms. Keiko Yamada for elemental
analysis. Dr. Hiroyuki Koshino is appreciated for characterization
of hydrosilation products by NMR. A part of this work was
financially supported by Mitsubishi Chemical Corporation Fund.
J ¼ 2:8 Hz, 1H), 5.38 (s, 1H, Si-H), 7.1–7.2 (m, 6H), 7.65–7.69 (m, 4H). 13
C
NMR (C6D6) d ¼ À0:77, À0:64, 17.57, 75.96, 78.15, 128.24, 129.98,
133.98, 135.99, 211.41. 6a: 1H NMR (C6D6) d ¼ 0:07 (s, 9H), 0.22 (s, 9H),
5.33 (s, 1H, Si-H), 6.05 (d, J ¼ 19:0 Hz, 1H), 6.49 (d, 4J ¼ 1:0 Hz, 1H), 7.16
(dd, 3J ¼ 19:0, 4J ¼ 1:0 Hz, 1H), 7.39 (m, 4H), 7.42 (m, 2H), 7.58 (dd,
J ¼ 7:8, 1.5 Hz, 4H). 13C NMR (C6D6) d ¼ À1:32, 0.46, 128.32, 130.00,
134.23, 136.22, 136.25, 147.44, 153.73, 155.65.
References and Notes
#
On leave from Dae-gu Christian University, Korea (JISTEC Winter Institute
Program, 2002)
## Current address: RIKEN Venture OM Chemtech Ltd., Wako, Saitama 351-
0198