10.1002/chem.201904213
Chemistry - A European Journal
RESEARCH ARTICLE
Rev., 2015, 44, 3418; e) Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51,
534. f) B. Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018, 8, 2981.
Song, B. Jiang, W. Du, Y.-C. Chen, ACS Catal. 2019, 9, 4374; g) S.-C.
Zheng, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2019, 58, 9215. f).
Oxidative methodologies: h) A. Straub, A. Goehrt, Angew. Chem. Int. Ed.
1996, 35, 2662; i) O. Quinonero, M. Jean, N. Vanthuyne, C. Roussel, D.
Bonne, T. Constantieux, C. Bressy, X. Bugaut, J. Rodriguez, Angew.
Chem., Int. Ed. 2016, 55, 1401; j) V. S. Raut, M. Jean, N. Vanthuyne, C.
Roussel, T. Constantieux, C. Bressy, X. Bugaut, D. Bonne, J. Rodriguez,
J. Am. Chem. Soc. 2017, 139, 2140; k) A. Link, C. Sparr, Angew. Chem.
Int. Ed. 2018, 57, 7136; l) Y.-L. Hu, Z. Wang, H. Yang, J. Chen, Z.-B. Wu,
Y. Lei, L. Zhou, Chem. Sci. 2019, 10, 6777; m) Y. Hayashi, A. Takikawa,
S. Koshino, K. Ishida, Chem. Eur. J. 2019, 25, 10319.
[5]
Metal catalyzed cross-couplings: a) T. Shimada, Y.-H. Cho, T. Hayashi,
J. Am. Chem. Soc. 2002, 124, 13396; b) J. Feng, B. Li, Y. He, Z. Gu
Angew. Chem. Int. Ed. 2016, 55, 2186; c) Y.-S. Jang, Ł. Woźniak, J.
Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 12901.
Organocatalytic arene-arene bond forming reaction: d) G.-Q. Li, H. Gao,
C. Keene, M. Devonas, D. H. Ess, L. Kürti, J. Am. Chem. Soc. 2013, 135,
7414; e) C. K. De, F. Pesciaioli, B. List, Angew. Chem. Int. Ed. 2013, 52,
9293; f) Y.-H. Chen, D. Cheng, Z. Zhang, Y. Wang, X.-Y. Liu, B. Tan, J.
Am. Chem. Soc. 2015, 137, 15062; g) S. Narute, R. Parnes, F. D. Toste,
D. Pappo, J. Am. Chem. Soc. 2016, 138, 16553; h) H.-H. Zhang, C.-S.
Wang, C. Li, G.-J. Mei, Y. Li, F. Shi, Angew. Chem. Int. Ed. 2016, 56,
116; i) C. Ma, F. Jiang, F.-T. Sheng, Y. Jiao, G.-J. Mei, F. Shi, Angew.
Chem. Int. Ed. 2018, 58, 3014; h) L.-W. Qui, J.-H. Mao, J. Zhang, B. Tan,
Nat. Chem. 2018, 10, 58; j) L.-W. Qui, S. Li, S.-H. Xiang, J. (J.) Wang, B.
Tan, Nat. Catal. 2019, 2, 314; k) M. Moliterno, R. Cari, A. Puglisi, A.
Antenucci, C. Sperandio, E. Moretti, A. Di Sabato, R. Salvio, M. Bella,
Angew. Chem. Int. Ed. 2016, 55, 6525.
[12] a) D. Bonne, J. Rodriguez, Chem. Commun. 2017, 53, 12385; b) N. Di
Iorio, G. Filippini, A. Mazzanti, P. Righi, G. Bencivenni, Org. Lett. 2017,
19, 6692; c) D. Bonne, J. Rodriguez, Eur. J. Org. Chem. 2018, 2018,
2417.
[13] E. Kumarasamy, R. Raghunathan, M. P: Sibi, J. Sivaguru, Chem. Rev.
2015, 115, 11239.
[14] a) L. S. Povarov, B. M. Mikhailov, B. M., Izv. Akad. Nauk SSSR, Ser.
Khim. 1963, 953. Some references on Brønsted acid catalysed
enantioselective Povarov reactions: b) T. Akiyama, H. Morita, K. Fuchibe,
J. Am. Chem. Soc. 2006, 128, 13070; c) H. Liu, G. Dagousset, G.
Masson, P. Retailleau, J. Zhu, J. Am. Chem. Soc. 2009, 131, 4598; d) G.
Dagousset, J. Zhu, G. Masson, J. Am. Chem. Soc. 2011, 133, 14804; e)
C. Min, C.-T. Lin, D. Seidel, Angew. Chem. Int. Ed. 2015, 54, 6608; for a
review, see: f) M. Fochi, L. Caruana, L. Bernardi, Synthesis 2014, 135.
[15] a) G. Bergonzini, L. Gramigna, A. Mazzanti, M. Fochi, L. Bernardi, A.
Ricci, Chem. Commun. 2010, 46, 327; for our additional contributions to
the Povarov reaction, see: b) L. Caruana, M. Fochi, S. Ranieri, A.
Mazzanti, L. Bernardi, Chem. Commun. 2013, 49, 880; c) L. Bernardi, G.
Bolzoni, M. Fochi, M. Mancinelli, A. Mazzanti, Eur. J. Org. Chem. 2016,
3208; d) D. Stevanović, G. Bertuzzi, A. Mazzanti, M. Fochi, L. Bernardi,
Adv. Synth. Catal. 2018, 360, 893;; for our additional work on the
chemistry of 3-alkenylindoles see: e) G. Bertuzzi, L. Lenti, G. D. Bisag,
M. Fochi, L. Bernardi. Adv. Synth. Catal. 2018, 360, 1296.
[6]
Proper cycloadditions: a) A. Gutnov, B. Heller, C. Fischer, H. J. Drexler,
A. Spannenberg, B. Sundermann, C. Sundermann, Angew. Chem. Int.
Ed. 2004, 43, 3795; b) T. Shibata, T. Fujimoto, K. Yokota, K. Takagi, J.
Am. Chem. Soc. 2004, 126, 8382; c) Y. Kwon, A. J. Chinn, B. Kim, J. S.
Miller, Angew. Chem. Int. Ed. 2018, 57, 6251; d) Y. Liu, X. Wu, S. Li, L.
Xue, C. Shan, Z. Zhao, H. Yan, Angew. Chem. Int. Ed. 2018, 57, 6491;
e) S.-C. Zheng, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2019, 58, 1494.
Other formations of aromatic rings: f) M. Terada, K. Dan, Chem.
Commun, 2012, 48, 5781; g) A. Link, C. Sparr, Angew. Chem. Int. Ed.
2014, 53, 5458; h) O. Quinonero, C. Bressy, X. Bugaut, Angew. Chem.
Int. Ed. 2014, 53, 10861; i) D. Lotter, M. Neuburger, M. Rickhaus, D.
Häussinger, C. Sparr, Angew. Chem. Int. Ed. 2016, 55, 2920; j) L. Zhang,
J. Zhang, J. Ma, D.-J. Keng, B. Tan J. Am. Chem. Soc. 2017, 139, 1714.
Chiral auxiliary: a) J. Clayden, S. P. Fletcher, J. J. W. McDouall, S. J. M.
Rowbottom, J. Am. Chem. Soc. 2009, 131, 5331; Bifunctional
organocatalysis: b) J. L. Gustafson, D. Lim, S. J. Miller, Science, 2010,
328, 1251; c) C. Yu, H. Huang, X. Li, Y. Zhang, W. Wang, J. Am. Chem.
Soc. 2016, 138, 6956; Phase-transfer organocatalysis d) S. Shirakawa,
X. Wu, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 14200; e) J. D.
Jolliffe, R. J. Armstrong, M. D. Smith, Nat. Chem. 2017, 9, 558; Covalent
bonding organocatalysis: f) S. Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int.
Ed. 2014, 53, 11041; g) G. Ma, J. Deng, M. P. Sibi, Angew. Chem. Int.
Ed. 2014, 53, 11818; Phosphoric acid organocatalysis: h) D.-J. Cheng,
L. Yan, S.-K. Tian, M.-Y. Wu, L.-X. Wang, Z.-L. Fan, S.-C. Zheng, X.-Y.
Liu, B. Tan, Angew. Chem. Int. Ed. 2014, 53, 3684; Metal catalysis: i) V.
Bhat, S. Wang, B. M. Stoltz, S. C. Virgil, J. Am. Chem. Soc. 2013, 135,
16829; j) P. Ramirez-Lopez, A. Ros, A. Romero-Arenas, J. Iglesias-
Sigüenza, R. Fernandez, J. M. Lassaletta, J. Am. Chem. Soc. 2016, 138,
12053.
[7]
[16] a) T. N. Birkinshaw, S. J. Teague C. Beech, R. V. Bonnert, S. Hill, A.
Patel, S. Reakes, H. Sanganee, I. G. Dougall, T. T. Phillips, S. Salter, J.
Schmidt, E. C. Arrowsmith, J. J. Carrillo, F. M. Bell, S. W. Paine, R.
Weaver, Bioorg. Med. Chem. Lett. 2006, 16, 4287; b) R. Pettipher, M.
Whittaker, J. Med. Chem. 2012, 55, 2915.
[17] a) K. Tanaka, A. Kamisawa, T. Suda, K. Noguchi, M. Hirano, J. Am.
Chem. Soc. 2007, 129, 12078; b) K. T. Barrett, A: J. Metrano, P. R.
Rablen, S. J. Miller, Nature 2014, 509, 71; c) D. Lotter, A. Castrogiovanni,
M. Neuburger, C. Sparr, ACS Cent. Sci. 2018, 4, 656; d) Q. Dherbassy,
J.-P. Djukic, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2018,
57, 4668; e) Y. Tan, S. Jia, F. Hu, Y. Liu, L. Peng, D. Li, H. Yan, J. Am.
Chem. Soc. 2018, 140, 16893.
[18] This paper was published during the preparation of this manuscript, see
ref. 11k.
[8]
a) K. Mori, Y. Ichikawa, M. Kobayashi, Y. Shibata, M. Yamanaka, T,
Akiyama, J. Am. Chem. Soc. 2013, 135, 3964; b) R. J. Armstrong, M. D.
Smith, Angew. Chem. Int. Ed. 2014, 53, 12822; c) N. Di Iorio, P. Righi,
A. Mazzanti, M. Mancinelli, A. Ciogli, G. Bencivenni, J. Am. Chem. Soc.
2014, 136, 10250; d) J.-W. Zhang, J.-H. Xu, D.-J. Cheng, C. Shi, X.-Y.
Liu, B. Tan, Nat. Commun. 2016, 7, 10677; e) N. Di Iorio, F. Champavert,
A. Erice, P. Righi, A. Mazzanti, G. Bencivenni, Tetrahedron, 2016, 72,
5191; f) L. Zhang, S.-H Xiang, J. (J.) Wang, J. Xiao, J.-Q. Wang, B. Tan
Nat. Commun. 2019, 10, 566.
[19] a) H. Booth, J. H. Little, J. Chem. Soc. Perkin II. 1972, 1884; b) J.
McKenna Tetrahedron, 1974, 30, 1555; c) B. H. White, M. L. Snapper, J.
Am. Chem. Soc. 2003, 125, 14901.
[20] Synthesized according to: S. Sahu, A. Banerjee, M. S. Maji, Org. Lett.
2017, 19, 464 and obtained as a single trans-isomer.
[21] A single regioisomer was produced, according to the literature (ref. 15a).
[22] Synthesized following a modified literature procedure (C. Gioia, A.
Hauville, L. Bernardi, F. Fini, A. Ricci. Angew. Chem. Int. Ed. 2008, 47,
9236) through Wittig reaction and obtained in 65:35 cis/trans ratio.
Preliminary studies revealed that cis-2c did not take part in the Povarov
cycloaddition but underwent an acid-promoted equilibration to reactive
trans-2c (see SI and ref. 14c for more details).
[9]
J. A. Berson, E. Brown, J. Am. Chem. Soc. 1955, 77, 450.
[10] A. I. Meyers, D. G. Wettlaufer, J. Am. Chem. Soc. 1984, 106, 1135.
[11] a) T. T. Nguyen, Org. Biomol. Chem. 2019, Org. Biomol. Chem. 2019,
17, 6952.. Non oxidative methodologies: b) T. Hattori, M. Date, K.
Sakurai, N. Morohashi, H. Kosugi, S. Miyano, Tetrahedron Lett. 2001, 42,
8035; c) Y. Nishii, K. Wakasugi, K. Koga, Y. Tanabe, J. Am. Chem. Soc.
2004, 126, 5358; d) Y. Liu, K. Lu, M. Dai, K. Wang, W. Wu, J. Chen, J.
Quan, Z. Yang Org. Lett. 2007, 9, 805; e) F. Guo, L. C. Konkol, R. J.
Thomson, J. Am. Chem. Soc. 2011, 133, 18; f) X.-L. He, H.-R. Zhao, X.
[23] The thermal stability of the stereogenic axis was confirmed by refluxing
a toluene solution of 4bc for one week without significant decrease in the
ee. As suggested with the calculations, the ΔGǂ is too high to be
rot
evaluated experimentally.
[24] ΔGǂrot = 42.6 kcal/mol.
This article is protected by copyright. All rights reserved.