2208
P. N. P. Rao et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2205–S2209
the O-atoms of the SO2Me substituent forms a hydro-
gen bond with the amide hydrogen of Phe518 (1.92 A).
The ring O-atom of the central lactone (pyran-2-one) is
oriented in the direction of the polar amino acid Arg120
at the mouth of the channel, where this O-atom is about
4.24 A away from the NH2 (guanidino) group. The
C¼O of the central pyran-2-one is hydrogen bonding
with the OH of Tyr355 (1.70 A). These interactions may
disrupt the salt bridge between His90, Arg120, Tyr355 and
Glu524 at the mouth of the COX-2 active site. The
unsubstituted phenyl ring lies in a hydrophobic cavity
lined by Tyr385, Trp387, Tyr348 and Ser530. Interestingly,
the C-6 EtS-substituent is located in a hydrophobic
region formed by Val344, Ile345, Val349, Ser530 and
Leu531, with the S-atom forming a weak hydrogen bond
with the OH of Ser530 (4.41 A). This shows the impor-
tance of the C-6 substituent in orienting the molecule
such that the methylsulfone moiety inserts into the sec-
ondary pocket of COX-2. A similar docking study for
the less potent, and less selective, COX-2 inhibitory C-6
OEt analogue (11b) showed that the SO2Me moiety is
inserted less deeply into the secondary pocket than the
C-6 SEt of 12b, the lactone ring oxygen atom in 11b is
closer to the NH2 of Arg120 (3.26 A) relative to 4.24 A in
12b, that the C-6 OEt oxygen atom is not within
hydrogen bonding distance of the OH of Ser530 (6.63 A),
and the intermolecular energy for the ligand-enzyme
complex for 11b is higher (ꢁ87.60 kcal/mol). These
observations together with the larger volume (328.5 A3),
provides a good explanation for the potent and selective
inhibitory activity of 12b.
2. (a) Arico, S.; Pattingre, S.; Bauvy, C.; Gane, P.; Barbat, A.;
Codogno, P.; Denis, O. E. J. Biol. Chem. 2002, 277, 27613. (b)
Sawaoka, H.; Kawano, S.; Tsuji, S.; Tsuji, M.; Gunawan,
E. S.; Takei, Y.; Nagano, K.; Hori, M. Am. J. Physiol. 1998,
274, G1061. (c) Liu, H. X.; Kirschenbaum, A.; Yao, S.; Lee,
R.; Holland, F. J.; Levine, C. A. J. Urol. 2000, 164, 820. (d)
Davies, G.; Martin, L. A.; Sacks, N.; Dowsett, M. Ann. Oncol.
2002, 13, 669.
3. Pasinetti, G. M. Arch. Gerontol. Geriatr. 2001, 33, 13.
4. (a) Penning, T.; Talley, J.; Bertenshaw, S.; Carter, J.; Col-
lins, P.; Docter, S.; Graneto, M.; Lee, L.; Malecha, J.; Miya-
shiro, J.; Rogers, R.; Rogier, D.; Yu, S.; Anderson, G.;
Burton, E.; Cogburn, J.; Gregory, S.; Koboldt, C.; Perkins,
W.; Seibert, K.; Veenhuizen, A.; Zhang, Y.; Isakson, P.
J. Med. Chem. 1997, 40, 1347. (b) Riendeau, D.; Percival,
M. D.; Brideau, C.; Charleson, S.; Dube, D.; Ethier, D.; Fal-
gueyret, J. P.; Friesen, R. W.; Gordon, R.; Greig, G.; Guay,
J.; Mancini, J.; Ouellet, M.; Wong, E.; Xu, L.; Boyce, S.;
Visco, D.; Girard, Y.; Prasit, P.; Zamboni, R.; Rodger, I. W.;
Gresser, M.; Ford-Hutchinson, A. W.; Young, R. N.; Chan,
C. C. J. Pharmacol. Exp. Ther. 2001, 296, 558.
5. Talley, J. Prog. Med. Chem. 1999, 36, 201.
6. Li, J. J.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.;
Collins, J. T.; Garland, D. J.; Gregory, S. A.; Huang, H. C.;
Isakson, P. C.; Koboldt, C. M.; Logusch, E. W.; Norton,
M. B.; Perkins, W. E.; Reinhard, E. J.; Seibert, K.; Veenhui-
zen, A. W. J. Med. Chem. 1995, 38, 4570.
7. Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson,
S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson,
A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.;
Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.;
O’Neill, G. P.; Quellet, M.; Percival, M. D.; Perrier, H.;
Riendeau, D.; Rodger, I.; Tagari, P.; Therien, M.; Vickers, P.;
Wong, E.; Xu, L. J.; Young, R. N.; Zamboni, R.; Boyce, S.;
Rupniak, N.; Forrest, M.; Visco, D.; Patrick, D. Bioorg. Med.
Chem. Lett. 1999, 9, 1773.
8. Li, H.; Rao, P. N. P.; Habeeb, A. G.; Knaus, E. E. Drug.
Dev. Res. 2002, 57, 6.
9. (a) Hayashi, Y.; Nozaki, H. Tetrahedron 1971, 27, 3085. (b)
Sasaki, T.; Kanematsu, K.; Kakehi, A. J. Org. Chem. 1971, 36,
2451.
10. (a) Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha,
C.; Browner, M. F. Nat. Struct. Biol. 1996, 3, 927. (b) Gierse,
J. K.; McDonald, J. J.; Hauser, S. D.; Rangwala, S. H.;
Koboldt, C. M.; Seibert, K. J. Biol. Chem. 1996, 271, 15810.
11. Kurumbail, R. G.; Stevens, A. M.; Gierse, J. K.; McDo-
nald, J. J.; Stegemen, R. A.; Pak, J. Y.; Gildehaus, D.; Miya-
shiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.;
Stallings, W. C. Nature 1996, 384, 644.
The results of this investigation show (i) a C-6 SEt sub-
stituent (12b)13 in this 3-(4-methanesulfonylphenyl)-4-
phenylpyran-2-one class of diarylheterocycles provides
potent and selective inhibition of the COX-2 isozyme,
(ii) molecular modeling studies indicate the SO2Me
moiety inserts deep into the COX-2 secondary pocket
and the C-6 SEt sulfur atom forms a weak hydrogen
bond with the OH atom of Ser530 and (iii) these C-6
alkyl, alkoxy and alkylthio compounds 10–12 could
serve as useful probes to study the function and cataly-
tic activity of the COX-2 isozyme.
12. Docking studies were performed using Insight II software
Version 2000.1 (Accelrys Inc.) running on a Silicon Graphics
Octane 2 R14000A workstation. The coordinates of the X-ray
crystal structure of the selective COX-2 inhibitor SC-558
bound to the murine COX-2 enzyme was obtained from the
RCSB Protein Data Bank (1cx2) and hydrogens were added.
The ligand molecules were constructed using the Builder
module and were energy minimized for 1000 iterations reach-
ing a convergence of 0.01 kcal/mol A. The energy minimized
ligands were superimposed on SC-558 in the PDB file 1cx2
after which SC-558 was deleted. The resulting structure
(ligand–enzyme assembly) was minimized using the Discover
module for 5000 iterations or until an RMSD of 0.05 A was
reached using consistent valence force field (CVFF). Further
optimization of the ligand–enzyme complex was obtained
using the Affinity command in the Docking module of Insight
II by defining subsets of the enzyme such that residues within
10 A of the ligand were allowed to relax, while the rest of the
enzyme residues were fixed. The optimal binding orientation
was achieved by utilizing 300 steps of steepest descent followed
Acknowledgements
We are grateful to the Canadian Institutes of Health
Research (MOP-14712) for financial support of this
research and to Rx&D-HRF/CIHR for a graduate
scholarship (to P.R.).
References and Notes
1. (a) Silverstein, F. E.; Faich, G.; Goldstein, J. L.; Simon,
L. S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agra-
wal, N. M.; Stenson, W. F.; Burr, A. M.; Zhao, W. W.; Kent,
J. D.; Lefkowith, J. B.; Verburg, K. M.; Geis, G. S. JAMA
2000, 284, 1247. (b) Hawkey, C.; Laine, L.; Simon, T.; Beau-
lieu, A.; Maldonado, C. J.; Acevedo, E.; Shahane, A.; Quan,
H.; Bolognese, J.; Mortensen, E. Arthritis Rheum. 2000, 43,
370.