2076
Q.-F. Zhou et al.
LETTER
(7) (a) Serra, S.; Fuganti, C.; Moro, A. J. Org. Chem. 2001, 66,
7883. (b) Turnbull, P.; Moore, H. W. J. Org. Chem. 1995,
60, 644.
(8) (a) Nefzi, A.; Ostresh, J. M.; Houghten, R. A. Chem. Rev.
1997, 97, 449. (b) Simon, C.; Constantieux, T.; Rodriguez,
J. Eur. J. Org. Chem. 2004, 4957. (c) Li, C. Chem. Rev.
2005, 105, 3095. (d) Xue, S.; Zhou, Q.-F.; Li, L.-Z.; Guo,
Q.-X. Synlett 2005, 2990.
To further extend this reaction, b-ketosulfones were also
applied to this reaction, and were found to undergo this
benzannulation reaction. Hence, reaction of ethyl propi-
olate with b-ketosulfones 9a and 9b gave the correspond-
ing products 10a and 10b, respectively, in 67% and 76%
yields. Moderate yield was also obtained when alkyl b-ke-
tosulfone 9c was submitted to this reaction (Scheme 4).
(9) (a) Hanedanian, M.; Loreau, O.; Sawiki, M.; Taran, F.
Tetrahedron 2005, 61, 2287. (b) Xue, S.; Zhou, Q.-F.;
Zheng, X.-Q. Synth. Commun. 2005, 35, 3027. (c) Trost, B.
M.; Dake, G. R. J. Am. Chem. Soc. 1997, 119, 7595.
(10) We recently reported cyclotrimerization of acetylenic
ketones catalyzed by DMAP in the presence of 2,4-
pentanedione: Zhou, Q.-F.; Yang, F.; Guo, Q.-X.; Xue, S.
Synlett 2007, 215.
(11) For selective recent phosphine- and amine-catalyzed
heterocyclization, see: (a) Xu, Z.; Lu, X. Tetrahedron Lett.
1997, 38, 3461. (b) Xu, Z.; Lu, X. J. Org. Chem. 1998, 63,
5031. (c) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001,
34, 535; and references therein. (d) Du, Y.; Lu, X.; Yu, Y. J.
Org. Chem. 2002, 67, 8901. (e) Zhu, X.-F.; Lah, J.; Kwon,
O. J. Am. Chem. Soc. 2003, 125, 4716. (f) Zhu, X.-F.;
Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett.
2005, 7, 1387. (g) Zhu, X.-F.; Henry, C. E.; Wang, J.;
Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 2977. (h) Shi,
Y.-L.; Shi, M. Org. Lett. 2005, 7, 3057. (i) Zhao, G. L.; Shi,
M. J. Org. Chem. 2005, 70, 9975. (j) Bi, X.; Dong, D.; Liu,
Q.; Pan, W.; Zhao, L.; Li, B. J. Am. Chem. Soc. 2005, 127,
4578. (k) Cui, S.-J.; Lin, X.-F.; Wang, Y.-G. Eur. J. Org.
Chem. 2006, 5174. (l) Wang, Y.-G.; Cui, S.-L.; Lin, X.-F.
Org. Lett. 2006, 8, 1241.
(12) Typical Procedure: A round-bottomed flask, equipped with
a stirring bar, was charged with b-dicarbonyl moieties (0.3
mmol) and DMAP (0.06 mmol) in CH2Cl2 (3 mL) followed
by ethyl propiolate (0.66 mmol) via a syringe. After stirring
for the specific time at r.t., the reaction was concentrated
under reduced pressure on a rotary evaporator and purified
by silica gel chromatography using PE–EtOAc (10:1–5:1) to
afford the corresponding product. Compound 3a: 1H NMR
(300 MHz, CDCl3): d = 8.39 (d, J = 1.7 Hz, 1 H), 8.18 (d,
J = 1.7 Hz, 1 H), 4.30–4.39 (m, 4 H), 2.57 (s, 3 H), 2.55 (s,
3 H), 1.37 (t, J = 7.8 Hz, 6 H). 13C NMR (75 Hz, CDCl3):
d = 202.3, 167.2, 165.2, 142.1, 141.8, 133.7, 132.7, 130.9,
128.2, 61.71, 61.68, 30.7, 18.2, 14.4, 14.3. IR (neat): 1725,
1259 cm–1. HRMS (ESI): m/z [M+] calcd for C15H18O5:
278.1154; found: 278.1147.
A possible mechanism for the present catalytic reaction
was proposed (Scheme 5). DMAP acted as a nucleophilic
promoter to initiate the reaction and produced a zwitteri-
onic intermediate 11, which then added to a second ethyl
propiolate to give the intermediate 12. The intermediate
12 may then deprotonate the active methylene proton of
the 1,3-dicarbonyl compound to generate the stabilized
enolate 14 together with compound 13. Enolate 14 was
then added to 13, followed by electron transfer to give the
intermediate 16 and subsequent generation of 18 through
intramolecular nucleophilic attack and proton transfer.
DMAP and H2O were eliminated from the intermediate 18
to afford the product 3a. The intermediate 16 might under-
go proton transfer to give enolate 19, followed by Michael
addition and elimination of Lewis base to generate prod-
uct 7a.
In summary, we have shown that 1,3-dicarbonyl com-
pounds undergo a new benzannulation reaction with ethyl
propiolate catalyzed by DMAP under mild conditions.
This methodology offers a facile way to synthesize highly
substituted benzenes from simple and commercially
available starting materials.
Acknowledgment
We express our appreciation to the National Natural Science Foun-
dation of China (20572104) and Program for NCET.
References and Notes
(1) (a) Modern Arene Chemistry; Astruc, D., Ed.; Wiley-VCH:
Weinheim / Germany, 2002. (b) The Chemistry of Phenols;
Rappoport, Z., Ed.; Wiley-VCH: New York, 2003.
(2) (a) Bunnet, J. F. Acc. Chem. Res. 1978, 11, 413.
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(c) Chauder, B.; Green, L.; Snieckus, V. Pure Appl. Chem.
1999, 71, 1521.
(3) (a) Kotha, T.; Brahmachary, E.; Lahiri, K. Eur. J. Org.
Chem. 2005, 4741. (b) Saito, S.; Yamamoto, Y. Chem. Rev.
2000, 100, 2901. (c) Vollhardt, K. P. C. Angew. Chem., Int.
Ed. Engl. 1984, 23, 539.
(4) (a) Oppolzer, W. In Comprehensive Organic Synthesis, Vol.
5; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991,
315–399. (b) Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T.
J. Am. Chem. Soc. 2003, 125, 9568. (c) Takahashi, T.;
Ishikawa, M.; Huo, S. J. Am. Chem. Soc. 2002, 124, 388.
(d) Langer, P.; Bose, G. Angew. Chem. Int. Ed. 2003, 42,
4033. (e) Katritzky, A. R.; Li, J.; Xie, L. Tetrahedron 1999,
55, 8263.
(5) Dotz, K. H.; Tomuschat, P. Chem. Soc. Rev. 1999, 28, 187.
(6) (a) Tius, M. A.; Gomez-Galeno, J. Tetrahedron Lett. 1986,
27, 2571. (b) Chan, T. H.; Prasad, C. V. C. J. Org. Chem.
1986, 51, 3012.
Compound 7a: 1H NMR (300 MHz, CDCl3): d = 8.01 (d, J =
15.8 Hz, 1 H), 7.69 (s, 1 H), 7.55 (d, J = 7.9 Hz, 2 H), 7.34–
7.43 (m, 4 H), 5.84 (dd, J = 3.2, 10.2 Hz, 1 H), 4.23–4.35 (m,
4 H), 4.15–4.19 (m, 2 H), 2.86 (dd, J = 10.2, 15.2 Hz, 1 H),
2.54 (dd, J = 3.2, 15.2 Hz, 1 H), 1.31–1.41 (m, 6 H), 1.24 (t,
J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d = 169.6,
165.0, 164.3, 162.1, 140.0, 136.0, 132.6, 129.9, 129.0,
128.2, 120.0, 117.9, 105.6, 71.9, 60.96, 60.92, 60.88, 37.8,
14.53, 14.45, 14.39. HRMS (EI): m/z [M+] calcd for
C23H26O7: 414.1679; found: 414.1674.
Compound 10a: 1H NMR (300 MHz, CDCl3): d = 9.20 (d,
J = 1.8 Hz, 1 H), 8.55 (d, J = 1.8 Hz, 1 H), 7.30 (m, 1 H),
7.12–7.17 (m, 2 H), 6.97–7.06 (m, 4 H), 6.87 (d, J = 7.5 Hz,
2 H), 4.49 (q, J = 7.2 Hz, 2 H), 3.99 (q, J = 7.2 Hz, 2 H), 2.33
(s, 3 H), 1.48 (t, J = 7.2 Hz, 3 H), 0.87 (t, J = 7.2 Hz, 3 H).
13C NMR (75 Hz, CDCl3): d = 166.7, 164.4, 144.8, 143.9,
142.1, 137.3, 136.6, 134.6, 134.2, 131.8, 130.5, 130.1,
129.2, 128.2, 127.9, 127.1, 62.1, 61.7, 21.6, 14.4, 13.6. IR
(neat): 1727, 1248 cm–1. HRMS (EI): m/z [M+] calcd for
C25H24O6S: 452.1294; found: 452.1302.
Synlett 2007, No. 13, 2073–2076 © Thieme Stuttgart · New York