9
6.5, 4.1 Hz, H-3, H-7), 2.63 (1H, ddd, J = 17.7, 12.2, 6.5 Hz, H-
Yield (40%); Rf = 0.39 (1:49 EtOAc/CHCl3 v/v); colorless
microcrystals (from EtOH); mp 213.6-214.9 °C; IR (neat) ν 1734
(C=O), 1709 (C=O), 1655 (C=O); H NMR (CDCl3) δ 7.55-7.53
4 or H-6), 2.62 (1H, ddd, J = 17.7, 12.2, 6.5 Hz, H-4 or H-6),
2.46 (1H, ddd, J = 17.7, 5.2, 4.1 Hz, H-4 or H-6), 2.45 (1H, ddd,
J = 17.7, 5.2, 4.1 Hz, H-4 or H-6); 13C NMR (125 MHz, CDCl3)
δ 165.1 (2C) (C-1, C-9), 154.1 (2C) (C-4a, C-5a), 144.9, 137.4
(2C) (arom C), 128.6 (2C), 128.5 (4C), 128.1 (2C), 127.8 (4C),
127.2 (2C), 126.3 (arom CH), 109.9 (2C) (C-9a, C-10a), 49.6
(2C) (N-CH2-Ph), 42.7 (2C) (C-3, C-7), 34.1 (Ph-CH<), 25.7
(2C) (C-4, C-6). Anal. Calcd for C31H28N2O3: C, 78.13; H, 5.92;
N, 5.88. Found: C, 77.94; H, 5.99; N, 5.88.
1
(2H, m, arom H), 7.32-7.22 (13H, m, arom H), 4.93 (2H, d, J =
14.0 Hz, N-CH2-Ph), 4.52 (2H, d, J = 14.0 Hz, N-CH2-Ph), 3.75
(1H, s, Ph-CH<), 3.527 (1H, ddd, J = 13.7, 6.1, 5.9 Hz, H-3 or H-
10), 3.526 (1H, ddd, J = 13.7, 6.1, 5.9 Hz, H-3 or H-10), 3.38
(2H, ddd, J = 13.7, 5.7, 5.4 Hz, H-3, H-10), 2.64 (2H, ddd, J =
18.8, 6.1, 5.7 Hz, H-4, H-11), 2.547 (1H, ddd, J = 18.8, 5.9, 5.4
Hz, H-4 or H-11), 2.546 (1H, ddd, J = 18.8, 5.9, 5.4 Hz, H-4 or
H-11); 13C NMR (CDCl3) δ 201.4 (2C) (C-5, C-12), 163.8 (2C)
(C-1, C-8), 136.3 (2C), 131.3 (arom C), 130.0 (3C), 128.7 (3C),
128.4 (5C), 128.03, 127.80, 127.76 (2C) (arom CH), 52.7 (2C)
(C-6, C-7), 50.0 (2C) (N-CH2-Ph), 40.9 (2C) (C-3, C-10), 39,7
(Ph-CH<), 38.4 (2C) (C-4, C-11). Anal. Calcd for C31H28N2O4:
C, 75.59; H, 5.73; N, 5.69. Found: C, 75.52; H, 5.87; N, 5.73. X-
ray crystallographic data of 8a: empirical formula C31H28N2O4;
formula weight 492.57; colorless platelet crystal; crystal
dimensions 0.54 × 0.38 × 0.18 mm; monoclinic; space group
P21/c (# 14); a = 11.475(1), b = 22.139(3), c = 10.259(1) Å, β =
100.772(2)°, V = 2560.3(5) Å3, Z = 4; Dcalcd = 1.278 g/cm3;
F(000) = 1040.00; µ(MoKα) = 0.848 cm-1; 2θmax = 54.9°; No. of
reflections measured 24626; No. of observations 5830; No. of
variables 334; Reflection/parameter ratio was 17.46; R = 0.1096;
Rw = 0.1840; GOF = 1.086. X-ray coordinates were deposited
with the Cambridge Crystallographic Data Centre: CCDC
1987107.
Acknowledgments
This research was supported by a Grant-in-Aid for Scientific
Research (C), No. 25410049, from the Japan Society for the
Promotion of Science. We also acknowledge Nissan Chemical
Corporation for the financial support.
References and notes
1. a) Melikyan, G. G. Org. Synth. 1997, 49, 427–675; b) Mondala,
M.; Bora, U. RSC Adv. 2013, 3, 18716–18754.
2. a) Nguyen, V.-H.; Nishino, H. Tetrahedron Lett. 2004, 45, 3373–
3377; b) Huynh, T.-T.; Yamakawa, H.; Nguyen, V.-H.; Nishino,
H. ChemistrySelect 2018, 3(23), 6414–6420.
3. Asahi, K.; Nishino, H. Tetrahedron 2008, 64, 1620
4. a) Asahi, K.; Nishino, H. Heterocycl. Commun. 2008, 14, 21–26;
b) Asahi, K.; Nishino, H. Eur. J. Org. Chem. 2008, 2404 2416; c)
–1634.
–
Kumabe, R.; Nishino H. Tetrahedron Lett. 2004, 45, 703–706; d)
Nishino, H.; Kumabe, R.; Hamada, R.; Yakut, M. Tetrahedron
2014, 70, 1437–1450.
The specific details of other new compounds 8b-e were
mentioned in the Supporting Information.
5. Sahu, D. P.; Giri, S. K.; Varshney,V.; Kumar, S. Synth. Commun
2009, 39, 3406 3419.
6. Guan-Wu Wang, G.-W.; Gao, J. Org. Lett. 2009, 11, 2385
7. Yao, C.; Wang, Y.; Li, T.; Yu, C.; Li, L.; Wang, C. Tetrahedron
2013, 69, 10593 10597.
8. Ogawa, T.; Murafuji, T.; Suzuki, H. Chem. Lett. 1988, 849
.
–
4.7. Transformation of methylenebis(piperidinedione)s 6a-e
into the pyranodipyridinediones 9a-e.
–
2388.
Methylenebis(piperidinedione) 6a (0.1 mmol, 49.2 mg) was
heated under reflux in AcOH/HCO2H (3 mL, 1:4 v/v) for 14 h.
After cooling, the reaction was quenched by adding a saturated
aqueous solution of NaHCO3 (6 mL). The aqueous solution was
extracted with CHCl3 (5 mL × 5) and the combined extracts were
washed with a saturated aqueous solution of NaHCO3 (10 mL),
brine (10 mL), dried over anhydrous MgSO4 (3 g), then
concentrated to dryness. The crude product (45.7 mg) was
separated by column chromatography on silica gel eluting with
–
–
852.
9. Tu, X-C.; Yu, Y.; Tu, M.-S.; Jiang, B.; Li, C.; Tu, S.-J. J.
Heterocycl. Chem. 2014, 51, 436–441.
10. a) Favre, H. A.; Powell, W. H. Nomenclature of Organic
Chemistry, The Royal Society of Chemistry, 2014; b) Eliel, E. L.;
Wilen, S. H. Stereochemistry of Organic Compounds; John Wiley
&
Sons: New York, 1994; pp 1138–1142; c) Tamao, K.;
Nakamura,K.; Ishii,H.; Yamaguchi,S.; Shiro, M. J. Am. Chem.
Soc. 1996, 118, 12469–12470; d) Ito, N.; Nishino, H.; Kurosawa,
K. Bull. Chem. Soc. Jpn. 1983, 56(11), 3527
Iwahara, Y.; Nishino, H.; Kurosawa, K. J. Chem. Soc., Perkin
Trans. 1, 1993, (5), 609 616; f) Fujino, R.; Nishino, H. Synthesis
2005, (5), 731–740; g) Fujino, R.; Kajikawa, S.; Nishino, H.
Tetrahedron Lett. 2005, 46 7303 7306; h) Tsubusaki, T.;
Nishino, H. Tetrahedron 2009, 65, 9448 9459; i) Huynh, T.-T.;
Nguyen, V.-H.; Nishino, H. Tetrahedron Lett. 2017, 58(37), 3619
3622; j) Nguyen, V.-H.; Ta, T. H. H.; Nguyen, T. T. U.; Huynh T.
T.; Nishino, H. Vietnam J. Chem. Int. Ed. 2017, 55(6), 765–767; k)
–3528; e) Yamada, T.;
40%
EtOAc/hexane,
giving
(39.5
the
mg,
corresponding
83%). Other
pyranodipyridinedione
9a
–
,
methylenebis(piperidinedione)s 6b-e underwent the same
reaction to produce the corresponding pyranodipyridinediones
9b-e. The specific details of 9a are given below and the other
new compounds 9b-e are described in the Supporting
Information.
,
–
–
–
-
-
-
4.7.1.
2,8-Dibenzyl-10-phenyl-3,4,6,7,8,10-hexahydro-1H-
Katayama, S.; Nishino, H. Heterocycl. Commun. 2019, 25(1)
157–161; l) Katayama, S.; Nishino, H. Synthesis 2019, 51(17)
,
,
pyrano[3,2-c:5,6-c']dipyridine-1,9(2H)-dione (9a).
3277–3286
11. a) Laura K. Smith, L. K; Baxendale, I. R. Org. Biomol. Chem
2015, 13, 9907–9933; b) D’yakonov, V. A.; Trapeznikova, O. A.;
de Meijere, A.; Dzhemilev, U. M. Chem. Rev. 2014, 114
.
.
,
5775−5814; c) Rios, R. Chem. Soc. Rev. 2012, 41, 1060–1074; d)
Meazza, M.; Kamlar, M.; Jašíková, L.; Formánek, B.; Mazzanti,
A.; Roithová, J.; Veselý, J.; Rios, R. Chem. Sci. 2018,
6373; e) Alex Zea, Andrea-Nekane R. Alba, Andrea Mazzanti,
Albert Moyano and Ramon Rios, Org. Biomol. Chem. 2011,
6519–6523; f) Nishino, H.; Hashimoto, H.; Korp, J. D.; Kurosawa,
K. Bull. Chem. Soc. Jpn. 1995, 68(7), 1999 2009; g) Nishino, H.;
9, 6368–
9,
Yield (83%); Rf = 0.24 (4:6 EtOAc/hexane v/v); colorless
microcrystals (from EtOH); mp 196.5-197.0 °C; IR (neat) ν 1705
(C=O), 1643 (C=O), 1630 (C=C); H NMR (CDCl3) δ 7.45 (2H,
d, J = 7.5 Hz, arom H), 7.31-7.17 (9H, m, arom H), 7.13 (4H, d, J
= 7.5 Hz, arom H), 5.12 (1H, s, Ph-CH<), 4.81 (2H, d, J = 15.5
Hz, N-CH2-Ph), 4.22 (2H, d, J = 15.5 Hz, N-CH2-Ph), 3.36 (2H,
ddd, J = 12.5, 12.2, 5.2 Hz, H-3, H-7), 3.21 (2H, ddd, J = 12.5,
–
1
Ishida, K.; Hashimoto, H.; Kurosawa, K. Synthesis 1996, 888
–
896.
12. Kikue, N.; Takahashi, T.; Nishino, H. Heterocycles 2015, 90(1)
,
540 562.
–