CHART 1
Aven u es in to th e Syn th esis of Illu sive
P oly(m -p h en ylen e-a lt-squ a r a in e)s:
P olycon d en sa tion of m -P h en ylen ed ia m in es
w ith Squ a r ic Acid In ter cep ted by
In ter m ed ia te Sem isqu a r a in es of
Excep tion a lly Low Rea ctivity
Marco A. Balbo Block, Anzar Khan, and Stefan Hecht*
Institut fu¨r Chemie/ Organische Chemie, Freie Universita¨t
Berlin, Takustr. 3, 14195 Berlin, Germany
shecht@chemie.fu-berlin.de
Received September 24, 2003
Abstr a ct: The synthesis and properties of a novel class of
ortho-dialkylamino-substituted semisquaraines are de-
scribed. The exceptionally low reactivity of the investigated
compounds is caused by an intramolecular hydrogen bond
as evidenced by experimental and computational studies.
Although this constitutes the reason for our failed attempts
to prepare poly(m-phenylene-alt-squaraine)s, the discovered
influence of hydrogen bonding on the photophysical proper-
ties of these semisquaraines provides a promising new motif
for sensor design.
bisnucleophile.7,8 However, the prepared polymers, mostly
of the poly(pyrrole-alt-squaraine) type,7 exhibit relatively
low degrees of polymerization and poor solubility, contain
regiodefects arising from â-substitution, and allow for
only limited architectural control.
Our interest in this field originates from the idea of
utilizing phenylenediamine derivatives to obtain poly-
(phenylene-alt-squaraine)s of various topologies such as
rodlike, cyclic, and helical structures 1-3 (Chart 1),
respectively, depending on the employed regioisomer, i.e.,
o-, m-, or p-phenylenediamine. Due to their expected
advantageous photophysical properties3 and the readily
tunable substitution to introduce, for instance, solubiliz-
ing groups, these compounds would be promising candi-
dates for optoelectronic, sensory, and transport applica-
tions. Here, we report on our attempts toward the
synthesis of poly(m-phenylene-alt-squaraine)s and sub-
sequently performed experiments devoted to understand
the unusual reactivity of intermediate phenylenedi-
amine-squaric acid monoadducts. We focus on the case
of m-phenylenediamines as activated aromatic moieties
since both amino substituents donate electron density to
the same carbon centers leading to a strong directing
effect, thereby affording meta-linked chain segments that
In tr od u ction
Squaraine dyes1 are well-known for their exceptional
properties,2 including their relatively small HOMO-
LUMO gaps, high extinction coefficients, photoconductiv-
ity, and net charge neutrality, that have been exploited
in a number of applications. The incorporation of the
squaraine chromophore into a conjugated framework
promises improved properties due to the predicted low
band gaps3 and polymer processibility. Therefore, to
access intrinsically conducting as well as IR-emitting
polymers based on donor-acceptor substituted conju-
gated polymers,4 poly(squaraine)s5 have received consid-
erable attention.6 In all cases, the polymers have been
accessed via a standard A2 + B2 polycondensation route
involving squaric acid as the biselectrophile and an
electron-rich aromatic or bisenamine moiety as the
(1) (a) Treibs, A.; J acob, K. Angew. Chem., Int. Ed. Engl. 1965, 4,
694-695. (b) A review is given in: Schmidt, A. H. Synthesis 1980, 961-
994.
(2) For reviews, consult: (a) Law, K.-Y. Chem. Rev. 1993, 93, 449-
486. (b) Das, S.; Thomas, K. G.; George, M. V. Mol. Supramol.
Photochem. 1997, 1, 467-517. (c) Law, K.-Y. Mol. Supramol. Photo-
chem. 1997, 1, 519-584.
(3) (a) Brocks, G.; Tol, A. J . Phys. Chem. 1996, 100, 1838-1846. (b)
Brocks, G.; Tol, A. Synth. Met. 1996, 76, 213-216.
(4) For a review, see: van Mullekom, H. A. M.; Vekemans, J . A. J .
M.; Havinga, E. E.; Meijer, E. W. Mater. Sci. Eng., R 2001, R32, 1-40.
(5) For a recent review, consult: Ajayaghosh, A. Chem. Soc. Rev.
2003, 32, 181-191.
(6) Representative reviews on conjugated polymers and their use
in organic electronics are given in: (a) Mu¨llen, K.; Wegner, G.
Electronic Materials: The Oligomer Approach; Wiley-VCH: Weinheim,
1998. (b) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.,
Int. Ed. 1998, 37, 402-428. (c) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc.
Chem. Res. 2001, 34, 359-369. (d) Dimitrakopoulos, C. D.; Malenfant,
P. R. L. Adv. Mater. 2002, 14, 99-117. (e) Rogers, J . A.; Bao, Z. J .
Polym. Sci., Part A: Polym. Chem. 2002, 40, 3327-3334.
(7) (a) Treibs, A.; J acob, K. Liebigs Ann. Chem. 1966, 699, 153-67.
(b) Lynch, D. E.; Geissler, U.; Peterson, I. R.; Floersheimer, M.;
Terbrack, R.; Chi, L. F.; Fuchs, H.; Calos, N. J .; Wood, B.; Kennard,
C. H. L.; Langley, G. J . J . Chem. Soc., Perkin Trans. 2 1997, 827-
832. (c) Lynch, D. E.; Peterson, I. R.; Floersheimer, M.; Essing, D.;
Chi, L.-F.; Fuchs, H.; Calos, N. J .; Wood, B.; Kennard, C. H. L.; Langley,
G. J . J . Chem. Soc., Perkin Trans. 2 1998, 779-784. (d) Lynch, D. E.;
Geissler, U.; Calos, N. J .; Wood, B.; Kinaev, N. N. Polym. Bull. 1998,
40, 373-380. (e) Ajayaghosh, A.; Chenthamarakshan, C. R.; Das, S.;
George, M. V. Chem. Mater. 1997, 9, 644-646. (f) Chenthamarakshan,
C. R.; Ajayaghosh, A. Chem. Mater. 1998, 10, 1657-1663. (g)
Chenthamarakshan, C. R.; Eldo, J .; Ajayaghosh, A. Macromolecules
1999, 32, 251-257.
(8) (a) Chen, Y. Y.; Hall, H. K., J r. Polym. Bull. 1986, 16, 419-425.
(b) Havinga, E. E.; Ten Hoeve, W.; Wynberg, H. Polym. Bull. 1992,
29, 119-126. (c) Havinga, E. E.; ten Hoeve, W.; Wynberg, H. Synth.
Met. 1993, 55, 299-306. (d) Havinga, E. E.; Pomp, A.; Ten Hoeve, W.;
Wynberg, H. Synth. Met. 1995, 69, 581-582. (e) Ajayaghosh, A.; Eldo,
J . Org. Lett. 2001, 3, 2595-2598. (f) Eldo, J .; Ajayaghosh, A. Chem.
Mater. 2002, 14, 410-418.
10.1021/jo035399z CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/12/2003
184
J . Org. Chem. 2004, 69, 184-187