C O M M U N I C A T I O N S
References
(1) In mechanically broken junctions: Reed, M. A.; Zhou, C.; Muller, C. J.;
Burgin, T. P.; Tour, J. M. Science 1997, 278, 252-254.
(2) In electromigrated junctions: (a) Park, H.; Lim, A. K. L.; Alivisatos, A.
P.; Park, J.; McEuen, Paul L. Appl. Phys. Lett. 1999, 400, 301-303. (b)
Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang, C.; Yalsh, Y.; Petta,
J. R. Rinkoski, M.; Sethna, J. P.; Abrun˜a, H. D.; McEuen, P. L.; Ralph,
D. C. Nature 2002, 417, 722-725. (c) Liang, W.; Shores, M. P.; Bockrath,
M.; Long, J. R.; Park, H. Nature 2002, 417, 725-729.
(3) In monolayer devices: (a) Aviram, A.; Ratner, M. A. Chem. Phys. Lett.
1974, 29, 277-283. (b) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J.
M. Science 1999, 286, 1550-1552. (c) Zhitenev, N. B.; Meng, H.; Bao,
Z. Phys. ReV. Lett. 2002, 88, 226801/1-226801/4.
(4) For SAMs of linear aromatics, see for example: (a) reference 3. (b) Allara,
D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.; Cygan, M. T.; Tour, J.
M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones, L., II. Ann. N. Y. Acad.
Sci. 1998, 852, 349-370. (c) Schumm, J. S.; Pearson, D. L.; Jones, L.,
II; Hara, R.; Tour, J. M. Nanotechnology 1996, 7, 430-433. (d) Holmlin,
R. E.; Ismagilov, R. F.; Haag, R.; Mujica, V.; Ratner, M. A.; Rampi, M.
A.; Whitesides, G. M. Angew. Chem., Int. Ed. 2001, 40, 2316-2320. (e)
Tour, J. M. Acc. Chem. Res. 2000, 33, 791-804.
(5) (a) Both the prone and vertical orientations are reported in: Ulman, A.
Acc. Chem. Res. 2001, 34, 855-63. (b) A largely vertical conformation
for a number of aromatic molecules: Tour, J. M.; Jones, L.; Pearson, D.
L.; Lamba, J. J. S.; Burgin, T. P.; Whitesides, G. W.; Allara, D. L.; Parikh,
A. N.; Sundar, V. A. J. Am. Chem. Soc. 1995, 117, 9529-9534.
(6) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481-4483.
(7) So, Y.; Zaleski, J. M.; Murlick, C.; Ellaboudy, A. Macromolecules 1996,
29, 2783-2795.
(8) Hirohashi, R.; Hishiki, Y.; Ishikawa, S. Polymer 1970, 11, 297-308.
(9) Osaheni, J. A.; Jenekhe, S. A.; Burns, A.; Du, G.; Joo, J.; Wang, Z.;
Epstein, A. J.; Wang, C. Macromolecules 1992, 25, 5828-5835.
(10) (a) Wolfe, J.; Arnold, F. E. Macromolecules 1981, 14, 909-915. (b) Perry,
R. J.; Wilson, B. D.; Miller, R. J. J. Org. Chem. 1992, 57, 2883-2887.
(c) Seha, V. Z.; Weis, C. D. HelV. Chim. Acta, 1980, 63, 413-419. (d)
Fuxen, C.; Azzam, W.; Arnold, R.; Witte, G.; Terfort, A.; Wo¨ll, C.
Langmuir 2001, 17, 3689-3695.
(11) Similar cyclizations to produce single oxazole rings have been effected
using: (a) Phosphites: Leyshon, L. J.; Saunders, D. G. J. Chem. Soc.
Chem. Commun. 1972, 1608-1609. (b) Phosphites: Takeuchi, H.; Shun-
ichi, Y.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54,
431-434. (c) Phosphines: Gololobov, Y. G.; Gusar, N. I.; Chaus, M. P.
Tetrahedron 1985, 41, 793-799.
(12) (a) Staudinger, H.; Meyer, J. HelV. Chim. Acta 1919, 2, 635-646. (b)
Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353-1406.
(13) (a) Bernard, M.; Ford, W. T. J. Org. Chem. 1983, 48, 326-332. (b)
Charette, A. B.; Boezio, A. A.; Janes, M. K Org. Lett. 2000, 2, 3777-
3779.
(14) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888-893.
(15) (a) Allara, D. L.; Nuzzo, R. G. Langmuir 1995, 1, 45-52. (b) Allara, D.
L.; Nuzzo. R. G. Langmuir 1995, 1, 52-66.
(16) For SAMs from cyano groups on: (a) Au and Cu, see: Steiner, U. B.;
Caseri, W. R.; Suter, U. W. Langmuir 1992, 8, 2771-2777. (b) Ni, see:
Hemminger, J. C.; Muetterties, E. L.; Somorjai., G. A. J. Am. Chem. Soc,
1979, 101, 62-67.
(17) Frey, S.; Stadler, V.; Heister, K.; Eck, W.; Zharnikov, M.; Grunze, M.;
Zeysing, B.; Terfort, A. Langmuir 2001, 17, 2408-2415.
(18) (a) Briggs, D.; Seah, M. P. Practical Surface Analysis; Wiley: Chichester,
1983. (b) Bain, C. D.; Whitesides, G. M. J. Phys. Chem. 1989, 93, 1670-
1673. (c) Laibinis, P. E.; Bain, C. D.; Whitesdies, G. M. J. Phys. Chem.
1991, 95, 7017-7021. (d) Nuzzo, R. G.; Finnie, K. R.; Haasch, R.
Langmuir 2000, 16, 6968-6976. (e) Noble-Luginbuhl, A. R.; Nuzzo, R.
G. Langmuir 2001, 17, 3937-3944.
(19) The length of the molecule from sulfur to carbon is calculated from energy
minimized structures generated using MacroModel v7.0 and the MMFFs*
forcefield (Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J.
Comput. Chem. 1990, 11, 440-467). To these lengths is added 0.24 nm
for the sulfur-gold bond length (from ref 5b).
Figure 2. (a) Molecular model of 1f on a Au (111) surface. (b) Infrared
spectrum (KBr) of bulk 1f (blue trace) and PEM-IRRAS spectrum from a
monolayer of 1f (red trace).
In aggregate, the results presented above indicate that monolayers
of 1f form with high coverage, orienting the bis-phenyloxazole
upright from the surface. Although the results are not as clear for
1b and 1g, the XPS data indicate that the molecules are also oriented
roughly upright in monolayers. A direct comparison with com-
pounds that lacked the phenyl side chains was not possible due to
their insolubility.
In summary, this study has put forth a new, modular method to
produce highly functionalized cross-shaped molecules. One arm
serves as the conjugated portion while the other provides structure
to thin films. In monolayer films the molecules orient upright from
the surface. This provides a means to conjugate a diversity of
functionality to a metallic underlayer and to test the electrical
properties of these films.3 Moreover, more complex functionaliza-
tion of the phenyl side chains is a promising route to molecular-
scale patterning of conductive substrates.
Acknowledgment. We thank Dr. Mike Steigerwald (Columbia
University) for useful discussions. This work is supported primarily
by the Nanoscale Science and Engineering Initiative of the National
Science Foundation under NSF Award Number CHE-0117752. This
work has used the shared experimental facilities that are supported
primarily by the MRSEC Program of the National Science
Foundation under Award Number DMR-0213574. C.N. thanks the
Beckman Young Investigator Program (2002), and the Dupont
Young Investigator Program (2002) for financial support. K.A.W.
acknowledges a summer fellowship through the NSF-REU program.
(20) (a) Hegedus, L. S.; Odle, R. R.; Winton, P. M.; Weider, P. R. J. Org.
Chem. 1982, 47, 2607-2613. (b) Maryanoff, C. A. Spectroscopy of
Oxazoles. In Heterocyclic Compounds; Turchi, I. J., Ed.; John Wiley &
Sons: New York, 1986; Vol. 45, pp 358-359.
(21) Advancing contact angle for ester-terminated SAMs are 67° and for
methyl-terminated SAMs are 114° (Bain, C. D.; Troughton, B. E.; Tao,
Y.; Evall, J.; Whitesides, G. M.; Nuzzo, R. N. J. Am. Chem. Soc. 1989,
111, 321-335). 1f has both a methyl-ester and an aliphatic component.
Supporting Information Available: Experimental details for the
synthesis and characterization of (1-4); XPS (1b, 1f, and 1g) and IR
(1b and 1f) for monolayer films (PDF). This material is available free
JA0350942
9
J. AM. CHEM. SOC. VOL. 125, NO. 20, 2003 6031