A.J. Matich et al. / Phytochemistry 75 (2012) 140–152
151
Cataldi, T.R.I., Lelario, F., Orlando, D., Bufo, S.A., 2010. Collision-induced dissociation
of the A + 2 isotope ion facilitates glucosinolates structure elucidation by
electrospray ionization–tandem mass spectrometry with a linear quadrupole
ion trap. Anal. Chem. 82, 5686–5696.
Mounicou, S., Vonderheide, A., Shann, J., Caruso, J., 2006. Comparing a selenium
accumulator plant (Brassica juncea) to nonaccumulator plant (Helianthus
a
annuus) to investigate selenium-containing proteins. Anal. Bioanal. Chem. 386,
1367–1378.
Chasteen, T.G., 1993. Confusion between dimethyl selenyl sulfide and dimethyl
selenone released by bacteria. Appl. Organomet. Chem. 7, 335–342.
Clarke, D.B., 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2,
310–325.
Mumm, R., Burow, M., Bukovinszkine’Kiss, G., Kazantzidou, E., Wittstock, U., Dicke,
M., Gershenzon, J., 2008. Formation of simple nitriles upon glucosinolate
hydrolysis affects direct and indirect defense against the specialist herbivore,
Pieris rapae. J. Chem. Ecol. 34, 1311–1321.
de Pinho, P.G., Valentão, P., Gonçalves, R.F., Sousa, C., Andrade, P.B., 2009. Volatile
composition of Brassica oleracea L. var. costata DC leaves using solid-phase
microextraction and gas chromatography/ion trap mass spectrometry. Rapid
Commun. Mass Spectrom. 23, 2292–2300.
Munday, R., Munday, C.M., 2004. Induction of phase II detoxification
enzymes in rats by plant-derived isothiocyanates: comparison of allyl
isothiocyanate with sulforaphane and related compounds. J. Agric. Food
Chem. 52, 1867–1871.
Di Cesare, L.F., Vitale, R., Acciarri, N., Branca, F., 2001. The characteristic volatile
composition of some horticultural cultivars of broccoli, cauliflower and cabbage
grown in Italy. Ind. Aliment. 40, 508–512.
Di Cesare, L.F., Vitale, R., Ferrari, V., 2002. Volatile compounds composition of
different cauliflower cultivars obtained by genetic improvement of the ‘‘Verde
di Macerata’’ ecotype. Ind. Aliment. 41, 562–567.
Eich-Greatorex, S., Sogn, T.A., Øgaard, A.F., Aasen, I., 2007. Plant availability of
inorganic and organic selenium fertiliser as influenced by soil organic matter
content and pH. Nutr. Cycl. Agroecosyst. 79, 221–231.
Ellis, D.R., Salt, D.E., 2003. Plants, selenium and human health. Curr. Opin. Plant Biol.
6, 273–279.
Nakamura, Y., Matsuo, T., Shimoi, K., Nakamura, Y., Tomita, I., 1993. S-methyl
methane thiosulphonate,
a new antumutagenic compound isolated from
Brassica oleracea L. var. botrytis. Biol. Pharm. Bull. 16, 207–209.
Nastruzzi, C., Cortesi, R., Esposito, E., Menegatti, E., Leoni, O., Iori, R., Palmieri, S.,
2000. In vitro antiproliferative activity of isothiocyanates and nitriles generated
by myrosinase-mediated hydrolysis of glucosinolates from seeds of Cruciferous
vegetables. J. Agric. Food Chem. 48, 3572–3575.
Newman, R.M., Hanscom, Z., Kerfoot, W.C., 1992. The watercress glucosinolate–
myrosinase system: a feeding deterrent to caddisflies, snails and amphipods.
Oecologia 92, 1–7.
NIST, 2002. NIST/EPA/NIH Mass Spectral Library (NIST 02). National Institute of
Standards and Technology, Gaithersburg, MD.
Emmert, S.W., Desai, D., Amin, S., Richie, J.P., 2010. Enhanced Nrf2-dependent
induction
of
glutathione
in
mouse
embryonic
fibroblasts
by
Nugon-Baudon, L., Rabot, S., 1994. Glucosinolates and glucosinolate derivatives:
implications for protection against chemical carcinogenesis. Nutr. Res. Rev. 7,
205–231.
isoselenocyanate analog of sulforaphane. Bioorg. Med. Chem. Lett. 20,
2675–2679.
Finley, J.W., Davis, C.D., Feng, Y., 2000. Selenium from high selenium broccoli
protects rats from colon cancer. J. Nutr. 130, 2384–2389.
Halkier, B.A., Gershenzon, J., 2006. Biology and biochemistry of glucosinolates. Ann.
Rev. Plant Biol. 57, 303–333.
Pedrero, Z., Elvira, D., Cámara, C., Madrid, Y., 2007. Selenium transformation studies
during Broccoli (Brassica oleracea) growing process by liquid chromatography-
inductively coupled plasma mass spectrometry (LC-ICP–MS). Anal. Chim. Acta
596, 251–256.
Hashimoto, S., Miyazawa, M., Kameoka, H., 1982. Volatile flavor sulfur and nitrogen
constituents of Brassica rapa L. J. Food Sci. 47, 2084–2085.
Hayes, J.D., Kelleher, M.O., Eggleston, I.M., 2008. The cancer chemopreventive
actions of phytochemicals derived from glucosinolates. Eur. J. Nutr. 47 (Suppl.
2), 73–88.
Hwang, E.S., Lee, H.J., 2006. Phenylethyl isothiocyanate and its N-acetylcysteine
conjugate suppress the metastasis of SK-Hep1 human hepatoma cells. J. Nutr.
Biochem. 17, 837–846.
Jacobsson, A., Nielsen, T., Sjöholm, I., 2004. Influence of temperature, modified
atmosphere packaging, and heat treatment on aroma compounds in broccoli. J.
Agric. Food Chem. 52, 1607–1614.
Pulsipher, G.D., Hathaway, R.L., Mosher, W., Pirelli, G.J., DelCurto, T., 2004. The effect
of fertilizing with sodium selenite on selenium concentration of hay and drain
water and serum selenium concentrations in beef heifers and calves. Proc. West.
Sect. Am. Soc. Anim. Sci. 55, 257–260.
Rayman, M.P., 2008. Food-chain selenium and human health: emphasis on intake.
Br. J. Nutr. 100, 254–268.
Rose, P., Huang, Q., Ong, C.N., Whiteman, M., 2005. Broccoli and watercress suppress
matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231
breast cancer cells. Toxicol. Appl. Pharmacol. 209, 105–113.
Russo, M., Spagnuolo, C., Tedesco, I., Russo, G.L., 2010. Phytochemicals in cancer
prevention and therapy: truth or dare? Toxins 2, 517–551.
Keck, A.-S., Finley, J.W., 2004. Cruciferous vegetables: cancer protective
mechanisms of glucosinolate hydrolysis products and selenium. Integr.
Cancer Ther. 3, 5–12.
Shah, M., Meija, J., Caruso, J.A., 2007. Relative mass defect filtering of high-
resolution mass spectra for exploring minor selenium volatiles in selenium-
enriched green onions. Anal. Chem. 79, 846–853.
Kissen, R., Bones, A.M., 2009. Nitrile-specifier proteins involved in glucosinolate
hydrolysis in Arabidopsis thaliana. J. Biol. Chem. 284, 12057–12070.
Kjaer, A., Skrydstrup, T., 1987. Selenoglucosinolates: synthesis and enzymatic
hydrolysis. Acta Chem. Scand. B 41, 29–33.
Kjaer, A., Ohashi, M., Wilson, J.M., Djerassi, C., 1963. Mass spectra of isothiocyanates.
Acta Chem. Scand. 17, 2143–2154.
Krumbein, A., Klaring, H.-P., Schonhof, I., Schreiner, M., 2010. Atmospheric
carbon dioxide changes photochemical activity, soluble sugars and volatile
levels in broccoli (Brassica oleracea var. italica). J. Agric. Food Chem. 58,
3747–3752.
Kubachka, K.M., Meija, J., LeDuc, D.L., Terry, N., Caruso, J., 2007. Selenium volatiles as
proxy to the metabolic pathways of selenium in genetically modified Brassica
juncea. Environ. Sci. Technol. 41, 1863–1869.
March, J., 1985. Advanced Organic Chemistry. Wiley-Interscience, New York.
Matich, A.J., McKenzie, M.J., Brummell, D.A., Rowan, D.D., 2009. Organoselenides
from Nicotiana tabacum genetically modified to accumulate selenium.
Phytochemistry 70, 1098–1106.
Matusheski, N.V., Juvik, J.A., Jeffery, E.H., 2004. Heating decreases epithiospecifier
protein activity and increases sulforaphane formation in broccoli.
Phytochemistry 65, 1273–1281.
Matusheski, N.V., Swarup, R., Juvik, J.A., Mithen, R., Bennett, M., Jeffery, E.H., 2006.
Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits
formation of the anticancer agent sulforaphane. J. Agric. Food Chem. 54, 2069–
2076.
McCully, M.E., Miller, C., Sprague, S.J., Huang, C.X., Kirkegaard, J.A., 2008.
Distribution of glucosinolates and sulphur-rich cells in roots of field-grown
canola (Brassica napus). New Phytol. 180, 193–205.
Sharma, A., Sharma, A.K., Madhunapantula, S.V., Desai, D., Huh, S.J., Mosca, P., Amin,
S., Robertson, G.P., 2009. Targeting Akt3 signaling in malignant melanoma using
isoselenocyanates. Clin. Cancer Res. 15, 1674–1685.
Sonderby, I.E., Geu-Flores, F., Halkier, B.A., 2010. Biosynthesis of glucosinolates –
gene discovery and beyond. Trends Plant Sci. 15, 283–290.
Sonoda, N., Yamamoto, G., Tsutsumi, S., 1972. Synthesis of aliphatic
isoselenocyanates by the reaction of aliphatic isocyanides with selenium in
the presence of triethylamine. Bull. Chem. Soc. Jpn. 45, 2937–2938.
Spencer, G.F., Daxenbichler, M.E., 1980. Gas chromatography–mass spectrometry of
nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous
glucosinolates. J. Sci. Food Agric. 31, 359–367.
Swearingen Jr., J.W., Frankel, D.P., Fuentes, D.E., Saavedra, C.P., Vásquez, C.C.,
Chasteen, T.G., 2006. Identification of biogenic dimethyl selenodisulfide in the
headspace gases above genetically modified Escherichia coli. Anal. Biochem. 348,
115–122.
Takahashi, M., Shibamoto, T., 2008. Chemical compositions and antioxidant/anti-
inflammatory activities of steam distillate from freeze-dried onion (Allium cepa
L.) sprout. J. Agric. Food Chem. 56, 10462–10467.
Tian, Q., Rosselot, R.A., Schwartz, S.J., 2005. Quantitative determination of intact
glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by
high-performance liquid chromatography–electrospray ionization–tandem
mass spectrometry. Anal. Biochem. 343, 93–99.
Tulio, A.Z., Yamanaka, H., Ueda, Y., Imahori, Y., 2002. Formation of methanethiol and
dimethyl disulfide in crushed tissues of broccoli florets and their inhibition by
freeze–thawing. J. Agric. Food Chem. 50, 1502–1507.
Valette, L., Fernandez, X., Poulain, S., Loiseau, A.M., Lizzani-Cuvelier, L., Levieil, R.,
Restier, L., 2003. Volatile constituents from Romanesco cauliflower. Food Chem.
80, 353–358.
McKenzie, M.J., Hunter, D.A., Pathirana, R., Watson, L.M., Joyce, N., Rowan, D.,
Matich, A., Brummell, D.A., 2009. Accumulation of an organic anticancer
Vercammen, J., Pham-Tuan, H., Arickx, I., Van der Straeten, D., Sandra, P., 2001.
Monitoring of isothiocyanates emanating from Arabidopsis thaliana upon
paraquat spraying. J. Chromatogr. A. 912, 127–134.
Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schrijver,
R., Hansen, M., Gerh, C., Mithen, R., Dekker, M., 2009. Review: glucosinolates in
Brassica vegetables: the influence of the food supply chain on intake,
bioavailability and human health. Mol. Nutr. Food Res. 53, S219–S265.
Vidal-Aragón, C., Lozano, M., Bernalte, J., Ayuso, C., Garcia, I., Hernandez, T., Garcia,
J., Gonzalez, J.A., 2009. Productive characteristics and volatile compounds of
seven broccoli cultivars. Ital. J. Food Sci. 21, 17–28.
selenium compound in
a transgenic Solanaceous species shows wider
applicability of the selenocysteine methyltransferase transgene from
selenium hyperaccumulators. Transgenic Res. 18, 407–424.
Meija, J., Caruso, J.A., 2004. Selenium and sulfur trichalcogenides from the
chalcogenide exchange reaction. Inorg. Chem. 43, 7486–7492.
Meija, J., Montes-Bayon, M., Le Duc, D.L., Terry, N., Caruso, J.A., 2002.
Simultaneous monitoring of volatile selenium and sulfur species from Se
accumulating plants (wild type and genetically modified) by GC/MS and
GC/ICPMS using solid-phase microextraction for sample introduction. Anal.
Chem. 74, 5837–5844.
Wang, W., Wang, S., Howie, A.F., Beckett, G.J., Mithen, R., Bao, Y., 2005. Sulforaphane,
erucin, and iberin up-regulate thioredoxin reductase 1 expression in human
MCF-7 cells. J. Agric. Food Chem. 53, 1417–1421.
Melchini, A., Traka, M.H., 2010. Biological profile of erucin:
a new promising
anticancer agent from Cruciferous vegetables. Toxins 2, 593–612.