M. Maheswara et al. / Tetrahedron Letters 50 (2009) 480–483
483
O
O
OH
Br
S
O
SH
a
b
7
8
2c
Scheme 3. Reagents and conditions: (a) thioacetic acid, DMF, K2CO3, rt, 2 h, 71%; (b) LiAlH4, Ether, rt, 1 h, 62%.
O
O
d or
OSnPh3
SSnPh3
OAc
SAc
OH
SH
OSiMe3
SSiMe3
e
a
b
c
SH
13
14
OAc
f
12
10
9
11
SH
Scheme 4. Reagents and conditions:8 (a) Ph3SnCl, CH2Cl2, Et3N, rt, 1 h, 95%; (b) 4c, 3 h, 30%; (c) Me3SiCl, CH2Cl2, Et3N, rt,1 h, 95%; (d) 4a, 5 h, 40%; (e) 4b, 4 h, 50%; (f) 4c, 6 h,
46%.
Synthesis 2006, 2841; (g) Baldessari, A.; Iglesias, L. E.; Gros, E. G. J. Chem. Res. (S)
1992, 204; (h) Baldessari, A.; Iglesias, L. E.; Gros, E. G. Biotechnol. Lett. 1994, 16,
479; (i) Wang, Y. F.; Wong, C. H. J. Org. Chem. 1988, 53, 3127; (j) Colombo, D.;
Ronchetti, F.; Scala, A.; Toma, L. J. Carbohydr. Chem. 1992, 11, 89; (k) Panza, L.;
Luisetti, M.; Crociati, E.; Riva, S. J. Carbohydr. Chem. 1993, 12, 125; (l) Kanerva, L.;
Rahiala, K.; Vanttinen, E. J. Chem. Soc. Perkin Trans. 1 1992, 1759; (m) Izumi, T.;
Fuyaka, K. Bull. Chem. Soc. Jpn. 1993, 66, 1216.
occurred during isolation to give free –SH of O-acylated products
(13 and 14) with moderate yields (Scheme 4). Unreacted interme-
diate (11) was recovered with 30–40%.
The acylation of triphenylsilyl alcohol was unique for b-mer-
capto alcohol and did not occur with 6-mercaptohexyl alcohol or
4-mercaptomethylbenzyl alcohol of remote functionalities. Thus,
the exceptional reactivity and selectivity of b-mercapto alcohol
seem to be due to the assistance of a neighboring sulfur.
5. The reason of the opposite selectivity is not clear. The possibility of
intramolecular acyl rearrangement was excluded because isolated two
products of O-acetyl and S-acetyl did not interconvert in methylene chloride
containing triethylamine.
6. Lalancette, J. M.; Freche, A. Can. J. Chem. 1971, 49, 4047.
7. Djerassi, C.; Gorman, M.; Markley, F. X.; Oldenburg, E. B. J. Am. Chem. Soc. 1955,
77, 568.
3. Conclusion
8. General procedure for the preparation of O-acylation derivatives: To a solution of a
mercapto alcohol (2, 9) (1.0 mmol) in CH2Cl2 (3.0 mL), triphenylsilyl chloride
(2.2 mmol) and Et3N (2.1 mmol) were added and stirred for appropriate time at
room temperature. After complete disappearance of starting material as
indicated by TLC, a solution of acylating agent (4) (1.0 mmol) was added. The
progress of the reaction was monitored by TLC, and upon completion the
reaction mixture was diluted with water (20 mL) and extracted with CH2Cl2. The
organic portion was dried over MgSO4 and concentrated. The residue was
subjected to column chromatography to give the corresponding O-acylated
product in moderate to high yields. The spectral (IR and 1H NMR) data of some of
the representative compounds are given below.
We have developed a simple and efficient method for the
chemoselective O-acylation of several mercapto alcohols via bis-
protective derivatives using alkyl/arylsilyl and stannyl groups.
The reaction underwent only with b-mercapto alcohols to give O-
acrylated or O-acetylated products. One-step synthesis, high con-
version, and impressive chemoselectivity are the noteworthy
advantages of present protocol.
Compound 5a: 1H NMR (CDCl3, 300 MHz): d 1.97 (s, 3H), 3.19 (t, 2H, J = 6.3 Hz),
3.94 (t, 2H, J = 7.2 Hz), 5.59 (s, 1H), 6.08 (s, 1H), 7.38–7.49 (m, 10H), 7.63–7.67
(m, 5H). Compound 5b: 1H NMR (CDCl3, 300 MHz): d 2.30 (s, 3H), 3.12 (t, 2H,
J = 6.3 Hz), 3.92 (t, 2H, J = 6.3 Hz), 7.38–7.49 (m, 10H), 7.62–7.66 (m, d 5H).
Compound 5c: 1H NMR (CDCl3, 300 MHz): 1.96 (s, 3H), 2.84 (t, 2H, J = 6.9 Hz),
4.14 (t, 2H, J = 7.2 Hz), 5.53 (s, 1H), 6.05 (s, 1H), 7.42–7.48 (m, 10H), 7.65–7.69
(m, 5H). Compound 5d: 1H NMR (CDCl3, 300 MHz): d 1.85 (s, 3H), 2.81 (t, 2H,
J = 6.9 Hz), 4.08 (t, 2H, J = 6.9 Hz), 7.44–7.47 (m, 10H), 7.64–7.69 (m, 5H).
Compound 5e: 1H NMR (CDCl3, 300 MHz): d 0.89 (t, 9H, J = 7.2 Hz), 1.16 (t, 6H,
J = 8.1 Hz), 1.34 (q, 7H, J = 7.5 Hz), 1.51–1.59 (m, 5H), 1.94 (s, 3H), 2.77 (t, 2H,
J = 7.5 Hz), 4.17 (t, 2H, J = 7.5 Hz), 5.55 (s, 1H), 6.11 (m, 1H). Compound 5f: 1H
NMR (CDCl3, 300 MHz): d 0.90 (t, 9H, J = 7.2 Hz), 1.15 (t, 6H, J = 8.1 Hz), 1.34 (q,
7H, J = 7.2 Hz), 1.51–1.59 (m, 5H), 2.05 (s, 3H), 2.74 (t, 2H, J = 7.2 Hz), 4.10 (t, 2H,
J = 7.2 Hz). Compound 5g: 1H NMR (CDCl3, 300 MHz): d 0.92 (t, 9H, J = 7.2 Hz),
1.19 (t, 6H, J = 6.6 Hz), 1.33 (q, 6H, J = 7.5 Hz), 1.53–1.65 (m, 6H), 2.89 (t, 2H,
J = 7.2 Hz), 4.37 (t, 2H, J = 7.8 Hz), 7.41–7.47 (m, 2H), 7.53–7.59 (m, 1H), 8.04–
8.08 (m, 2H). Compound 5h: 1H NMR (CDCl3, 300 MHz): d 0.07 (s, 9H), 1.98 (s,
3H), 3.10 (t, 2H, J = 6.6 Hz), 3.73 (t, 2H, J = 6.6 Hz), 5.59 (s, 1H), 6.09 (s, 1H).
Compound 5k: 1H NMR (CDCl3, 300 MHz): d 0.09 (s, 9H), 1.34–1.49 (m, 4H),
1.81–1.89 (m, 4H), 2.08–2.12 (m, 1H), 2.31 (s, 3H), 3.42–3.49 (m, 1H). Compound
5m: 1H NMR (CDCl3, 300 MHz): d 0.08 (s, 9H), 2.34 (s, 3H), 3.01–3.19 (m, 2H),
4.71–4.78 (m, 1H), 7.33–7.36 (m, 5H). Compound 13: IR (KBr): mmax 2925, 2854,
Acknowledgments
This work was supported for two years by the Pusan National
University, Research Grant and by the IT R&D program (2006-S-
073-02) of the MKE/IITA, Korea.
References and notes
1. Greene, T. W.; Wuts, P. G. M. Protective groups in organic synthesis, 3rd ed.; John
Wiley and Sons: New York, 1999.
2. (a) Hajjar, A. B.; Nicks, P. F.; Knowles, C. J. Biotechnol. Lett. 1990, 12, 825; (b)
Kang, Y.; Taton, T. A. Angew. Chem., Int. Ed. Engl. 2005, 44, 409; (c) Li, Z.; Jin, R.;
Mirkin, C. A.; Letsinger, R. L. Nucleic Acids Res. 2002, 30, 1558.
3. (a) Becker, D.; Summerfield, S.; Gillich, S.; Sevilla, M. D. Int. J. Radiat. Biol. 1994,
65, 537; (b) Biaglow, J. E.; Varnes, M. E.; Clark, E. P.; Epp, E. R. Radiat. Res. 1983,
95, 437; (c) Sigdestad, C. P.; Connor, A. M.; Sims, C. S. Int. J. Radiat. Oncol. Biol.
Phys. 1992, 22, 807; (d) Yuhas, J. M. Cancer Res. 1980, 40, 1519; (e) Weiss, J. F.;
Simic, M. G. Pharmacol. Ther. 1988, 39, 1; (f) Kilambi, H.; Reddy, S. K.;
Schneidewind, L.; Stansbury, J. W.; Bowman, C. N. Polymer 2007, 48, 2014.
4. (a) Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Chem. Commun. 2002, 1834;
(b) Selliger, H.; Gortz, H. H. Synth.Commun. 1980, 10, 175; (c) Kumar, P.; Pandey,
R. K.; Bodas, M. S.; Dagade, S. P.; Dongare, M. K.; Ramaswamy, A. V. J. Mol. Catal.
A: Chem. 2002, 181, 207; (d) Bruice, T. C.. In Organic Sulfur Compounds; Kharasch,
N., Ed.; Springer: London, 1961; Vol. 1, p 421; (e) Shelkov, R.; Nahmany, M.;
Melman, A. Org. Biomol. Chem. 2004, 2, 397; (f) Nahmany, M.; Melman, A.
2361, 1741, 1434, 1377, 1201, 946 cmÀ1 1H NMR (CDCl3, 300 MHz): d 2.09 (s,
;
3H), 2.99 (s, 1H), 5.57 (s, 1H), 6.40 (s, 1H), 7.15–7.24 (m, 2H), 7.29 (d, 1H,
J = 8.7 Hz), 7.60 (dd, 1H, J = 8.1 Hz). Compound 14: IR (KBr): mmax 2924, 2855,
2361, 1769, 1464, 1368, 1186, 1058, 952 cmÀ1 1H NMR (CDCl3, 300 MHz): d
;
2.33 (s, 3H), 7.15–7.24 (m, 2H), 7.30 (d, 1H, J = 7.8 Hz), 7.59 (dd, 1H, J = 7.8 Hz).