SCHEME 1. Syn th esis of cis-P r olin e-Der ived
Cyclic Typ e VI â-Tu r n Mim ic 4
Syn th esis of a Novel cis-P r olin e-Der ived
Cyclic Typ e VI â-Tu r n Mim ic via
Rin g-Closin g Meta th esis†
Anima Boruah,‡ I. Nageshwar Rao,‡
J yoti Prokash Nandy,§ S. Kiran Kumar,|
A. C. Kunwar,| and J aved Iqbal*,‡,§
Department of Chemistry, Indian Institute of Technology,
Kanpur, 208016, India, Discovery Research,
Dr. Reddy’s Laboratories, Ltd., Bollaram Road, Miyapur,
Hyderabad 500 050, India, and Indian Institute of
Chemical Technology, Uppal Road, Tarnaka,
Hyderabad 500 007, India
javediqbaldrf@hotmail.com
Received September 23, 2002
Abstr a ct: A cis-proline derived cyclic mimic of a type VI
â-turn is synthesized via a ring-closing metathesis reaction.
The solution NMR conformational study indicates that the
major conformer of the cyclic peptide adopts a type VIa
â-turn in CDCl3 and a type VIb â-turn in DMSO-d6.
we have observed that a tetrapeptide, N-cinnamoyl-val-
pro-phe-leu-methyl ester 1a (Scheme 1), exists in a 310
helical structure.9 To synthesize the L-proline-derived
cyclic 310 helical structure via ring-closing metathesis,10
we have installed a pentenoyl group at the N-terminus
of 1a and an allyl ester moiety in the C-terminus to get
the precursor. The synthesis of the peptide 2 was
achieved as shown in the Scheme 1. O-allyl-N-Boc-val-
pro-phe-leu, 1b, was synthesized by usual amide coupling
protocols. It was then treated with trifluoroacetic acid
(TFA) and finally coupled with pentenoic acid by mixed
anhydride reaction (iBuOCOCl/Et3N) to get the acyclic
precursor 2 in 85% yield.
The peptide 2 afforded the corresponding cyclic peptide
3 as a mixture of E/Z isomers (5:1) in good yield (70%)
when subjected to RCM using Grubbs’ “Ru”-catalyst.
Detailed solution 1H NMR, molecular dynamics (MD),
and circular dichroism (CD) studies show an interesting
conformational behavior for these peptides (Figure 1). It
is noteworthy that unlike the acyclic peptide 1a ,11 having
Proline is the only cyclic proteinogenic amino acid that
plays a significant role in the structural and conforma-
tional properties of peptides and proteins.1 It has the
unique ability to undergo cis-trans isomerization about
the imide bond linking proline and the preceding amino
acid residue. Despite its rare occurrence, the cis-proline-
imide bond is present in various biologically important
molecules.2 It is also known that the cis-proline residue
alters the backbone chain direction through a type VI
â-turn and is often observed to terminate R-helices.3 The
type VI â-turn is a relatively less common protein second-
ary structure involving a cis imide bond N-terminal to
the L-proline residue situated at the i + 2 position.4 This
particular motif plays a significant role in protein folding
and has a profound influence on the recognition process
involving protein-ligand interaction.55 Aromatic amino
acids preceding the proline residue have been found to
stabilize the cis-proline imide bond conformations.6
In an ongoing study7 in our laboratory on the develop-
ment of the small cyclic peptides as protease inhibitors,8
(7) For a recent study from our group on ring-closing metathesis
derived cyclic peptides, see: (a) Prabhakaran, E. N.; Rajesh, V.; Dubey,
S.; Iqbal, J . Tetrahedron Lett. 2001, 42, 339-342. (b) Saha, B.; Das,
D.; Banerji, B.; Iqbal, J . Tetrahedron Lett. 2002, 43, 6467. (c) Banerji,
B.; Bhattacharya, M.; Madhu, B. R.; Das, S. K.; Iqbal, J . Tetrahedron
Lett. 2002, 43, 6473. (d) Banerji, B.; Mallesham, B.; Kiran Kumar, S.;
Kunwar, A. C.; Iqbal, J . Tetrahedron Lett. 2002, 43, 6479. (e) Sastry,
T. V. R. S.; Banerji, B.; Kirankumar, S.; Kunwar, A. C.; Das, J .; Nandy,
J . P.; Iqbal, J . Tetrahedron Lett. 2002, 43, 7621.
(8) (a) Babine, R. E.; Bender, S. L. Chem. Rev. 1997, 97, 1359. (b)
Sherin, S.; Abdel-Meguid; Zhao, B.; Murthy, K. H. M.; Winborne, E.;
Choi, J . K.; Desjarlais, R. L.; Minnich, M. D.; Culp, J . S.; Debouck, C.;
Tomaszek, T. A., J r.; Meek; Dreyer, G. B. Biochemistry 1993, 32, 7972-
7980. (c) Debouck C. Aids Res. Human Retroviruses 1992, 8, 153-
164. (d) Slee, D. H.; Lasio, K. L.; Elder, J . H.; Ollmann, I. R.; Gustchina,
A.; Kervinen, J .; Zdanov, A.; Wlodawer, A.; Wong, C. H. J Am. Chem.
Soc. 1995, 117, 11867-11878.
† DRL Publication No. 239.
‡ Dr. Reddy’s Laboratories Ltd.
§ Indian Institute of Technology.
| Indian Institute of Chemical Technology.
(1) Schmid, F. X.; Mayr, L. M.; Mucke, M.; Schonbrunner, E. R. Adv.
Protein Chem. 1993, 44, 25-66.
(2) (a) Fox, R. O.; Evans, P. A.; Dobson, C. M. Nature 1986, 320,
192-194, (b) Higgins, K. A.; Craik, D. J .; Hall, J . G.; Andrews, P. R.
Drug. Des. Delivery 1988, 3, 159-17.
(3) (a) Chou, P. Y.; Fasman, G. D. Annu. Rev. Biochem. 1087, 47,
251-276. (b) Frommel, C.; Preissner, R. FEBS Lett. 1990, 277, 159-
163.
(9) (a) Patel, H. C.; Singh, T. P.; Chauhan, V. S.; Kaur, P. Biopolymer
1990, 29, 509. (b) Ciajolo, M. R.; Tuzi, A.; Pratesi, C. R.; Fissi, A.;
Pieroni, O. Biopolymer 1992, 32, 727. (c) Rajashankar, K. R.; Rama-
kumar, S.; Chauhan, V. S. J . Am. Chem. Soc. 1992, 114, 9225. (d)
Pieroni, O.; Fissi, A.; Pratesi, C.; Temussi, P. A.; Ciardelli, F. Biopoly-
mer 1994, 33, 1.
(4) (a) Muller, G.; Gurrath, M.; Kurz, M.; Kessler, H. Proteins: Struct.
Funct. Genet. 1993, 14, 235. (b) Wilmot, C. M.; Thornton, J . M. J . Mol.
Biol. 1988, 203, 221.
(5) Reviewed in: (a) Fischer, G. Angew. Chem., Int. Ed. Engl. 1994,
33, 1415. (b) Liu, J .; Chen, C. M.; Walsh, C. T. Biochemistry 1991, 30,
2306.
(6) (a) Grathwohl, C.; Wuthrich, K. Biopolymers 1976, 15, 2043-
2057. (b) Grathwohl, C.; Wuthrich, K. Biopolymers 1981, 20, 2623-
2633.
(10) (a) Phillips. A. J .; Abell, A. J . Aldrichim. Acta 1999, 32, 75-
90. (b) Schuster, M.; Blechert. S. Angew. Chem., Int. Ed. 1997, 36,
2036-2056 and references cited therein. (c) Furstner, A. Angew. Chem.,
Int. Ed. 2000, 39, 3012-3043 and references cited there in.
(11) The peptide 1a showed a 310 helical conformation (unpublished
work).
10.1021/jo020618m CCC: $25.00 © 2003 American Chemical Society
Published on Web 05/13/2003
5006
J . Org. Chem. 2003, 68, 5006-5008