Chemistry Letters Vol.32, No.5 (2003)
431
Am. Chem. Soc., 103, 4587 (1981); M. Yoshifuji, I. Shima, N. Inamoto,
K. Hirotsu, and T. Higuchi, J. Am. Chem. Soc., 104, 6167 (1982). b) M.
Yoshifuji, J. Organomet. Chem., 611, 210 (2000).
M. Yoshifuji, M. Hirano, and K. Toyota, Tetrahedron Lett., 34, 1043
(1993).
3
4
5
M. Yoshifuji, D.-L. An, K. Toyota, and M. Yasunami, Chem. Lett.,
1993, 2069.
p-Phenylene-bridged bis(diphosphene) derivative has recently been re-
ported. See, S. Shah, T. Concolino, A. L. Rheingold, and J. D.
Protasiewicz, Inorg. Chem., 39, 3860 (2000).
M. Yoshifuji, T. Niitsu, D. Shiomi, and N. Inamoto, Tetrahedron Lett.,
30, 5433 (1989).
6
7
8
W. Rundel, Chem. Ber., 101, 2956 (1968).
K. Toyota, Y. Matsushita, N. Shinohara, and M. Yoshifuji, Heteroat.
Chem., 12, 418 (2001).
9
K. Toyota, A. Nakamura, and M. Yoshifuji, Chem. Commun., 2002,
3012.
10 L. A. van de Kuil, H. Luitjes, D. M. Grove, J. W. Zwikker, J. G. M. van
der Linden, A. M. Roelofsen, L. W. Jenneskens, W. Drenth, and G. van
Koten, Organometallics, 13, 468 (1994).
Figure 1. Molecular structure of 1e, showing the atomic label-
ing scheme with thermal ellipsoids (50% probability). Hydrogen
ꢀ
11 3e: mp 59–61 ꢁC; 1H NMR (400 MHz, CDCl3) ꢁ ¼ 1:63 (18H, s, t-
Bu), 3.85 (3H, s, OMe), 7.02 (2H, s); 13C{1Hg NMR (100 MHz,
CDCl3) ꢁ ¼ 31:2 (CMe3), 38.7 (CMe3), 55.5 (OMe), 112.7, 115.9,
151.0, 157.9; MS (70 eV) m=z 300 (Mþ+2; 100), 298 (Mþ; 100),
285 (Mþ–Me+2; 33), 283 (Mþ–Me; 33). Found: m=z 298.0934. Calcd
for C15H23BrO: M, 298.0932. 4e: mp 98–100ꢁC; 1H NMR (CDCl3)
ꢁ ¼ 1:54 (12H, s, CMe2), 3.88 (3H, s, OMe), 6.99 (2H, s), 9.78 (2H,
s, CHO); 13C{1Hg NMR (CDCl3) ꢁ ¼ 24:3 (CMe2), 53.2 (CMe2),
55.9 (OMe), 114.5, 115.7, 145.9, 159.6, 203.0 (CHO); MS m=z 328
(Mþ+2; 6), 326 (Mþ; 6), 247 (Mþ–Br; 100). Found: m=z 326.0521.
Calcd for C15H19BrO3: M, 326.0518. 5: mp 155–157ꢁC; 1H NMR
(CDCl3) ꢁ ¼ 3:86 (4H, s, CH2CN), 3.88 (3H, s, OMe), 7.10 (2H, s);
13C{1Hg NMR (CDCl3) ꢁ ¼ 26:1 (CH2), 56.2 (OMe), 115.2, 115.9,
116.9, 132.7, 159.8; MS m=z 266 (Mþ+2; 98) 264 (Mþ; 100). Found:
m=z 263.9905. Calcd for C11H9BrN2O: M, 263.9898. 6: mp 149–
151 ꢁC; 1H NMR (CDCl3) ꢁ ¼ 1:95 (12H, s, CMe2CN), 3.87 (3H, s,
OMe), 7.05 (2H, s); 13C{1Hg NMR (CDCl3) ꢁ ¼ 28:7 (CMe2), 38.6
(CMe2), 56.0 (OMe), 113.6, 114.8, 123.7, 142.2, 159.2; MS m=z 322
(Mþ+2; 99) 320 (Mþ; 100). Found: m=z 320.0520. Calcd for
atoms are omitted for clarity. Some selected bond lengths (A)
and angles (ꢁ): P(1)–P(2), 2.043(1); P(1)–C(1), 1.860(4); P(2)–
C(7), 1.869(4); O(1)–C(4), 1.372(4); O(2)–C(10), 1.370(4);
P(1)–P(2)–C(7), 98.7(1); P(2)–P(1)–C(1), 100.5(1).
Table 1. 31P NMR and UV-vis data of compounds 1 and 2
a
Compd. dP
ꢀ/nm (log e)
1a 490.0b 284 (4.19)c,d 340 (3.89) 460 (3.13)
1d 488.7e 290 (4.03)c,e 340 (3.85) 450 (3.00)
1e 495.9 291 (4.21)c 346 (3.75) 477 (3.12)
2a 256.5f 238 (4.48)g 266 (4.30) 275 (4.32) 365 (4.05)
2d 254.8 237 (4.55)g 266 (4.40) 275 (4.45) 362 (4.25)
2e 258.0 239 (4.61)g 266 (4.42) 275 (4.46) 369 (4.30)
aMeasured in CDCl3. bData taken from Ref. 14. cMeasured in
d
e
CH2Cl2. Data taken from Ref. 2a. Data taken from Ref. 6.
fData taken from Ref. 1b, see also, Ref. 15. gMeasured in
hexane.
C
15H17BrN2O: M, 320.0524.
12 1e: Orange prisms, mp 165–169 ꢁC (dec.); 1H NMR (400 MHz,
CDCl3) ꢁ ¼ 1:41 (36H, s, t-Bu), 3.56 (6H, s, OMe), and 7.14 (4H,
s); 13C{1Hg NMR (100 MHz, CDCl3) ꢁ ¼ 55:4 (OMe); 31P{1Hg
NMR (162 MHz, C6D6) ꢁ ¼ 498:8; MS (70 eV) m=z 500 (Mþ; 16)
and 249 (ArPþ–1; 100). Found: m=z 500.3000. Calcd for C30H46O2P2:
M, 500.2973. 2d: Yellow needles, mp 162–164 ꢁC; 1H NMR (CDCl3)
ꢁ ¼ 1:46 (18H, s, t-Bu), 5.29 (1H), 6.78 (1H), 7.17 (1H), 7.29–7.37
(2H), 7.45–7.59 (4H), 7.64 (1H), and 8.28 (1H); 13C{1Hg NMR
2a
ꢀ
for 1a [1.862(2) A], the P=P bond length for 1e [2.043(1) A]
ꢀ
ꢀ
is slightly longer than that for 1a [2.034(2) A]. The interplanar
angles between the average plane [P(1), P(2), C(1), C(7)] and
the aromatic rings [C(1)–C(6) and C(7)–C(12)] are 70.18(10)
and 108.08(10)ꢁ, respectively, whereas the corresponding angle
is 63.9 ꢁ in 1a. The interplanar angle between the two aromatic
rings of 1e is 70.7(1)ꢁ. The dihedral angle C(1)–P(1)–P(2)–C(7)
for 1e [165.0(2)ꢁ] is smaller than that for 1a [172.2(1)ꢁ], which
means that the deviation from the planarity of the –P=P– moi-
ety is larger in 1e than in 1a in the crystal.
In summary, we have developed a new bulky substituent
bearing a p-methoxy group. Some low-coordinated phosphorus
compounds bearing the substituent were prepared and the ef-
fects of the p-substituent were evaluated. The method described
here is promising for preparations of various p-functionalized
bulky bromobenzenes. Studies on the reactivities of 1e and 2e
are now in progress.
1
(CDCl3) ꢁ ¼ 170:3 (d, JPC ¼ 42:2 Hz, P=C); 31P{1Hg NMR (C6D6)
ꢁ ¼ 253:5; MS m=z 384 (Mþ; 27) and 219 (ArPþ–1; 100). Found:
m=z 384.2007. Calcd for C27H29OP: M, 384.2007. 2e: Yellow prisms,
mp 205–207 ꢁC (dec.); 1H NMR (CDCl3) ꢁ ¼ 1:44 (18H, s, t-Bu), 3.96
(3H, s, OMe), 5.56 (1H), 6.84 (1H), 7.14 (2H), 7.18 (1H), 7.28–7.37
(2H), 7.57 (1H), 7.64 (1H), and 8.27 (1H); 13C{1Hg NMR (CDCl3)
1
ꢁ ¼ 171:2 (d, JPC ¼ 43:2 Hz, P=C); 31P{1Hg NMR (C6D6)
ꢁ ¼ 257:2; MS m=z 414 (Mþ; 18), 249 (ArPþ–1; 100), and 165
(Fluþ+1; 33). Found: m=z 414.2104. Calcd for C28H31OP: M,
414.2113.
13 R. Gleiter, G. Friedrich, M. Yoshifuji, K. Shibayama, and N. Inamoto,
Chem. Lett., 1984, 313.
14 D.-L. An, K. Toyota, M. Yasunami, and M. Yoshifuji, J. Organomet.
Chem., 508, 7 (1996).
15 V. D. Romanenko, A. V. Ruban, M. I. Povolotskii, L. K. Polyachenko,
and L. N. Markovskii, Zh. Obshch. Khim., 56, 1186 (1986).
16 Recrystallized from CH2Cl2–hexane, measured at 153 K. C30H46O2P2,
M ¼ 500:64. Monoclinic, space group P21=n (#14), a ¼ 10:181ð7Þ,
This work was supported in part by the Grants-in-Aid for
Scientific Research (Nos. 13304049, 14044012, and
13640522) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
ꢁ
ꢀ
ꢀ 3
b ¼ 19:299ð4Þ, c ¼ 15:413ð3Þ A, ꢂ ¼ 104:75ð3Þ , V ¼ 2928ð2Þ A ,
Z ¼ 4, Dc ¼ 1:135 g cmÀ3, ꢃ (Mo Kꢄ) ¼1:72 cmÀ1. 3955 Unique re-
flections with 2ꢅ ꢂ 50:0 ꢁ. Of these, 3683 with I > 2:0 sðIÞ were used
for R1 calculation. The structure was solved by direct methods. Non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were in-
cluded but not refined. R1 ¼ 0:073, R ¼ 0:134, Rw ¼ 0:178. Crystallo-
graphic data have been deposited at the Cambridge Crystallographic
Data Centre (No. CCDC-202408).
References and Notes
1
a) J. G. Verkade, Acc. Chem. Res., 26, 483 (1993). b) K. Toyota, S.
Kawasaki, and M. Yoshifuji, Tetrahedron Lett., 43, 7953 (2002).
a) M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T. Higuchi, J.
2
Published on the web (Advance View) April 9, 2003; DOI 10.1246/cl.2003.430