Angewandte
Chemie
Pandit, H. S. Overkleeft, B. C. Borer, H. Bieräugel, Eur. J. Org.
Chem. 1999, 959 – 968; c) A. Fürstner, Angew. Chem. 2000, 112,
3140 – 3172; Angew. Chem. Int. Ed. 2000, 39, 3012 – 3043, and
references therein.
[14] Although Grubbs' catalyst 10 was not optimal for the larger
rings, it also furnished 15 as the major diastereoisomer, which
confirmed that the catalyst was not responsible for the reversal
in selectivity.
[15] The diastereoselectivities in Figure 3, refer to crude product
ratios, whereas the selectivities in Table 3 are for the purified
silaketals 14a–d and 15a–d.
[4] G. C. Fu, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 5426 – 5427.
[5] For a stereospecific approach to C2-symmetrical 1,4-diols, see:
a) P. A. Evans, V. S. Murthy, J. Org. Chem. 1998, 63, 6768 – 6769;
b) M. Lobbel, P. Kꢀll, Tetrahedron: Asymmetry 2000, 11, 393 –
396.
[6] For examples of silicon-tethered ring-closing-metathesis cross-
coupling reactions, see: a) T. R. Hoye, M. A. Promo, Tetrahe-
dron Lett. 1999, 40, 1429 – 1432; b) J.-G. Boiteau, P. Van de -
Weghe, J. Eustache, Tetrahedron Lett. 2001, 42, 239 – 242;
c) B. A. Harrison, G. L. Verdine, Org. Lett. 2001, 3, 2157 – 2159.
[7] For a related example of an enantioselective RCM using a
prochiral alcohol, see: A. F. Kiely, J. A. Jernelius, R. R. Schrock,
A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 2868 – 2869.
[8] For examples of diastereoselective ring-closing-metathesis reac-
tions, see: a) C. M. Huwe, J. Velder, S. Blechert, Angew. Chem.
1996, 108, 2542 – 2544; Angew. Chem. Int. Ed. Engl. 1996, 35,
2376 – 2378; b) S. D. Burke, M. Müller, C. M. Beaudry, Org. Lett.
1999, 1, 1827 – 1829; c) H. Oguri, S.-Y. Sasaki, T. Oishi, M.
Hirama, Tetrahedron Lett. 1999, 40, 5405 – 5408; d) M. Lautens,
G. Hughes, Angew. Chem. 1999, 111, 160 – 162; Angew. Chem.
Int. Ed. 1999, 38, 129 – 131; e) G. C. Lloyd-Jones, M. Murray,
R. A. Stentiford, P. A. Worthington, Eur. J. Org. Chem. 2000,
975 – 985; f) D. J. Wallace, C. J. Cowden, D. J. Kennedy, M. S.
Ashwood, I. F. Cottrell, U.-H. Dolling, Tetrahedron Lett. 2000,
41, 2027 – 2029; g) B. Schmidt, M. Westhus, Tetrahedron 2000, 56,
2421 – 2426; h) D. S. Stoianova, P. R. Hanson, Org. Lett. 2000, 2,
1769 – 1772; i) Y. Fukuda, H. Sasaki, M. Shindo, K. Shishido,
Tetrahedron Lett. 2002, 43, 2047 – 2049; j) M. Ogasawara, T.
Nagano, T. Hayashi, J. Am. Chem. Soc. 2002, 124, 9068 – 9069.
[9] For reviews on temporary silicon-tethered strategies, see: a) L.
Fensterbank, M. Malacria, S. M. Sieburth, Synthesis 1997, 813 –
854; b) D. R. Gauthier, Jr., K. S. Zandi, K. J. Shea, Tetrahedron
1998, 54, 2289 – 2338.
[10] S. M. Sieburth, L. Fensterbank, J. Org. Chem. 1992, 57, 5279 –
5281.
[11] a) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M.
DiMare, M. O'Regan, J. Am. Chem. Soc. 1990, 112, 3875 – 3886;
b) P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996,
118, 100 – 110; c) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs,
Org. Lett. 1999, 1, 953 – 956.
[12] The major stereoisomer was confirmed from nOe experiments in
each case (8a–i). Details are available in the Supporting
Information.
NOE
Ha
O
Hb
R
O
Si
8
iPr iPr
[13] The silyl tether can be readily removed in each case to afford the
corresponding diol. For example, treatment of 8 f with 5%
aqueous HFat room temperature furnished the bisallylic 1,4-diol
16 in 99% yield.
5% aq. HF
Ph
Ph
MeCN/CH2Cl2
O
O
OH
OH
Si
iPr iPr
RT, 2 h
99%
8f
16
Angew. Chem. Int. Ed. 2003, 42, 1734 – 1737
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1737