Dendritic β-Diketones and Cu-Catalyzed Diaryl Ether Formation
fields, such as materials science and biphotonic absorption.
In addition, because of environmental laws and regulations
that demand environmentally more friendly products, many
efforts are currently being dedicated to the design of de-
gradable materials. To this end, the observed decomposition
of the phosphorus dendrimer interiors could give an oppor-
tunity to render them environmentally more friendly, thus
opening new uses.
[1]
[2]
A. V. Kel’in, A. Maioli, Curr. Org. Chem. 2003, 7, 1855–1886.
a) G. S. Hammond, D. C. Nonhebel, C.-H. S. Wu, Inorg. Chem.
1963, 2, 73–76; b) R. M. Pike, Coord. Chem. Rev. 1967, 2, 163–
172; c) R. C. Mehrotra, R. Bohra, D. P. Gaur, Metal β-Diketon-
ates and Allied Derivatives, Academic Press, New York, 1978;
d) R. A. Vigato, V. Peruzzo, S. Tamburini, Coord. Chem. Rev.
2009, 253, 1099–1201.
[3]
[4]
J. Kido, Y. Okamaoto, Coord. Chem. Rev. 2002, 102, 2357–
2368.
For applications of supported diketones in catalysis, see: a) Y.
Nose, M. Hatano, S. Kambara, Makromol. Chem. 1966, 136–
137; b) K. Zaw, P. M. Henry, J. Mol. Catal. A 1995, 101, 187–
198; c) G. Norhona, P. M. Henry, J. Mol. Catal. A 1997, 120,
75–87; d) K. Soga, E. Kaji, T. Uozumi, J. Polym. Sci. Polym.
Chem. Ed. J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 823–
826; e) F. Benvenuti, C. Carlini, A. M. Raspolli Galletti, G.
Sbrana, M. Marchionna, P. Ferrarini, Polym. Adv. Technol.
1998, 9, 113–120; f) V. A. Nair, K. Sreekumar, Curr. Sci. 2001,
81, 194–197; g) V. A. Nair, M. M. Suni, K. Sreekumar, React.
Funct. Polym. 2003, 57, 33–40; h) V. A. Nair, M. M. Suni, K.
Sreekumar, Proc. Indian Acad. Sci. 2002, 114, 481–486; i) J. L.
Gorczynski, J. Chen, C. L. Fraser, J. Am. Chem. Soc. 2005, 127,
14956–14957; j) S. Benyahya, F. Monnier, M. Wong Chi Man,
C. Bied, F. Ouazzani, M. Taillefer, Green Chem. 2009, 11,
1121–1123; k) S. Wang, M. Zhang, L. Zhong, W. Zhang, J.
Mol. Catal. A 2010, 327, 92–100.
For applications of supported diketones in luminescent materi-
als and as fluorescent probes, see: a) J. L. Bender, Q.-D. Shen,
C. L. Fraser, Tetrahedron 2004, 60, 7277–7285; b) L. Fu, R. A.
Sa Ferreira, N. J. O. Silva, A. J. Fernandes, P. Ribeiro-Claro,
I. S. Goncalves, V. de Zea Bermudez, L. D. Carlos, J. Mater.
Chem. 2005, 15, 3117–3125; c) K. Zhang, Z. Chen, C. Yang,
S. Gong, J. Qin, Y. Cao, Macromol. Rapid Commun. 2006, 27,
1926–1931; d) X. Qiao, B. Yan, J. Phys. Chem. B 2008, 112,
14742–14750; e) L. Xu, Y.-F. Ma, K.-Z. Tang, Y. Tang, J. Fluo-
resc. 2008, 18, 685–693; f) A. Nagai, K. Kokado, Y. Nagata, Y.
Chujo, Macromolecules 2008, 41, 8295–8298; g) Y.-J. Li, B.
Yan, Inorg. Chem. 2009, 48, 8276–8285; h) X.-F. Qiao, B. Yan,
Eur. Polym. J. 2009, 45, 2002–2010; i) L. N. Bochkarev, A. V.
Safronova, G. V. Basova, Russ. J. Gen. Chem. 2010, 80, 695–
698.
a) L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, F. Wang,
Tetrahedron Lett. 2010, 51, 4612–4616; b) S. Li, W. Zhu, Z. Xu,
J. Pan, H. Tian, Tetrahedron 2006, 62, 5035–5048; c) Y. Zhang,
H.-H. Shi, Y. Cao, Chin. J. Chem. 2006, 24, 1631–1638.
A.-M. Caminade, C.-O. Turrin, R. Laurent, A. Ouali, B. Dela-
vaux-Nicot, Dendrimers: Towards Catalytic, Material and Bio-
medical Uses, Wiley-VCH, Weinheim, 2011.
J. W. J. Knapen, A. W. van de Made, J. C. de Wilde, P. W. N. M.
van Leeuwen, P. Wijkens, D. M. Grove, G. van Koten, Nature
1994, 372, 659–663.
a) D. A. Tomalia, P. R. Dvornik, Nature 1994, 372, 617–618; b)
D. G. E. Oosterom, J. N. H. Reek, P. C. J. Kamer, P. W. N. M.
van Leeuwen, Angew. Chem. 2001, 113, 1878; Angew. Chem.
Int. Ed. 2001, 40, 1828–1849; c) D. Astruc, K. Heuzé, S. Gat-
ard, D. Méry, S. Nlate, L. Plault, Adv. Synth. Catal. 2005, 347,
329–338; d) D. Astruc, F. Chardec, Chem. Rev. 2001, 101,
2991–3023; e) L. J. Twyman, A. S. H. King, I. K. Martin,
Chem. Soc. Rev. 2002, 31, 69–82; f) R. van Heerbeek, P. C. J.
Kamer, P. W. N. M. van Leeuwen, J. N. H. Reek, Chem. Rev.
2002, 102, 3717–3756; g) A.-M. Caminade, V. Maraval, R.
Laurent, J.-P. Majoral, Curr. Org. Chem. 2002, 6, 739–744; h)
A.-M. Caminade, P. Servin, R. Laurent, J.-P. Majoral, Chem.
Soc. Rev. 2008, 37, 56–67; i) D. J. Cole-Hamilton, Science 2003,
299, 1702–1706; j) A.-M. Caminade, J.-P. Majoral, Coord.
Chem. Rev. 2005, 249, 1917–1926; k) A.-M. Caminade, J.-P.
Majoral, Coord. Chem. Rev. 2005, 249, 1917–1926; l) D. Méry,
D. Astruc, Coord. Chem. Rev. 2006, 250, 1965–1979; m) B.
Helms, J. M. J. Fréchet, Adv. Synth. Catal. 2006, 348, 1125–
Experimental Section
General: The procedures for the syntheses of 2-OH, 2-OMe, 2-B,
1
and 2-Gn (n = 0–4), their characterization and corresponding H,
13C, and 31P NMR spectra (if applicable) are detailed in the Sup-
porting Information.
General Procedure for Catalytic Tests (4 mmol Scale): After stan-
dard cycles of evacuation and back-filling with argon, an oven-
dried Radley tube (Carousel “reaction stations RR98030”)
equipped with a magnetic stirring bar was charged with CuI
(0.04 mmol), ligand (0.16 mmol for monomeric ligands, 0.08 mmol
for 2-B, 0.027 mmol for 2-G0, 0.013 mmol for 2-G1, 0.0067 mmol
for 2-G2, 0.0033 mmol for 2-G3, and 0.0017 mmol for 2-G4), 3,5-
dimethylphenol (1.4 equiv.), aryl bromide (1 equiv.), if a solid, and
cesium carbonate (1.2 equiv.). The tube was evacuated and back-
filled with argon. If a liquid, aryl bromide was added under a
stream of argon by syringe at room temperature followed by DMF
(2.0 mL). The tube was sealed under a positive pressure of argon,
stirred, and heated to the required temperature for the required
time period. After cooling to room temperature, 1,3-dimethoxy-
benzene (standard, 230 μL) and dichloromethane (5 mL) were
added. A small amount of the reaction mixture was filtered through
a plug of Celite®, and the filter cake was washed with dichloro-
methane. The filtrate was washed once with water, which was reex-
tracted twice with dichloromethane. The organic layers were com-
bined, concentrated in vacuo, and characterized by NMR spec-
troscopy. To isolate 3, the filtrate was purified by flash chromatog-
raphy on silica gel (eluent: pentane/dichloromethane, 80:20) and
obtained as a colorless oil (673 mg, 85% if using 2-OMe and
595 mg, 75% if using 2-G1). Whatever the nature of the ligand
(either monomeric or dendrimeric), 3 was obtained in high purity
(see Supporting Information for 1H NMR spectra). See the Sup-
porting Information for the isolation (column chromatography)
and characterization of 2-OPh, 2-B-OH, and 2-B-OPh.
[5]
[6]
[7]
[8]
[9]
CCDC-835337 (for 2-OH), -835336 (for 2-B), and -835338 (for
2-OPh) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Procedures for the syntheses of 2-OH, 2-OMe, 2-B, and 2-Gn
(n = 0–4), their characterization and corresponding 1H, 13C, and
31P NMR spectra; isolation (column chromatography) and charac-
terization of 2-OPh, 2-B-OH, and 2-B-OPh.
Acknowledgments
We thank the Ministère de l’Education Nationale for a PhD grant
and financial support, the Centre National de la Recherche Sci-
entifique (CNRS) and the Agence Nationale de la Recherche
(ANR H2OFerCat) for funding.
Eur. J. Org. Chem. 2012, 1056–1062
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1061