Organic Letters
Letter
(6) Suman, P.; Raju, B. C. Org. Biomol. Chem. 2014, 12, 3358−3361.
(7) Chatterjee, S.; Guchhait, S.; Goswami, R. K. J. Org. Chem. 2014, 79,
7689−7695.
(8) Rej, R. K.; Kumar, R.; Nanda, S. Tetrahedron 2015, 71, 3185−3194.
(9) Kamal, A.; Balakrishna, M.; Venkat Reddy, P.; Rahim, A.
Tetrahedron: Asymmetry 2014, 25, 148−155.
(10) (a) Schmidt, J.; Stark, C. B. W. Org. Lett. 2012, 14, 4042−4045.
(b) Giera, D. S.; Stark, C. B. W. RSC Adv. 2013, 3, 21280−21284.
(c) Schmidt, J.; Stark, C. B. W. J. Org. Chem. 2014, 79, 1920−1928.
(d) Schmidt, J.; Khalil, Z.; Capon, R. J.; Stark, C. B. W. Beilstein J. Org.
conditions the epoxide instantaneously underwent partial
cyclization33 to give cytospolide M (6), though the reactive
conformer presumably has to accommodate several pseudoaxial
substituents. AdditionofacatalyticamountofCSAcompletedthe
formation of the natural [6.2.1]-bicycle. To further convert the
10-membered lactone 6 into the 5-membered γ-lactone 9, we
tried different conditions for saponification. Lactone 6 showed
remarkable stability toward 1 N HCl and 1 N NaOH, but finally
withpotassiumtrimethylsilanolate34 lactone6couldbeopenedto
the carboxylate. After aqueous workup and concentration in
vacuo, a spontaneous recyclization to cytospolide Q (9) occurred.
However, under these basic reaction conditions, we also observed
partial epimerization. For the synthesis of cytospolide O (7) we
utilized an oxa-Michael addition strategy. Macrolide 24 was
oxidizedtoenone26andthendeprotected togive27. Contraryto
the epoxide of 4, enone 27 did not undergo a spontaneous oxa-
Micheal addition, but after formation of the alkoxide with
LiHMDS, cytospolide O (7) was produced in 63% yield.
In summary we established a synthetic route toward
cytospolide D (4). Significant hurdles emerging during the
macrolactonization could be circumvented by omitting a
protecting group at C-3 and through use of Shiina’s method.
However, the low yield of 21% underlines the difficulties in
closing a 10-membered ring containing an E-double bond. The
first total syntheses of the higher oxygenated cytospolides M (6),
O (7), and Q (9) were successfully achieved using a strategy
reflecting the putative biosynthetic pathways based on
cytospolide D (4).
Chem. 2014, 10, 1228−1232. (e) Muller, J. M.; Stark, C. B. W. Angew.
̈
Chem., Int. Ed. 2016, 55, 4798−4802.
(11) (a) Paterson, I.; Wallace, D. J.; Velazquez, S. M. Tetrahedron Lett.
1994, 35, 9083−9086. (b) Paterson, I.; Wallace, D. J.; Cowden, C. J.
Synthesis 1998, 1998, 639−652.
(12) (a) Staab, H. A.; Sommer, N. Angew. Chem. 1962, 74, 294.
(b) Schobert, R.; Gordon, G. J. Science of Synthesis 2004, 27, 973−1070.
(13) (a) Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74, 5828−
5835. (b) Cram, D. J.; Wilson, D. R. J. Am. Chem. Soc. 1963, 85, 1245−
1249. (c)Reetz,M.T.Acc. Chem.Res.1993,26,462−468.(d)Mengel,A.;
Reiser, O. Chem. Rev. 1999, 99, 1191−1223.
́
(14) (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9,
2199−2204. (b) Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 1976, 17,
155−158. (c) Anh, N. T. Top. Curr. Chem. 1980, 88, 145−162.
(15) (a) Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Tetrahedron Lett.
1976, 17, 2455−2458. (b) Mitsunobu, O. Synthesis 1981, 1981, 1−28.
(16) Larcheveque, M.; Lalande, J. Tetrahedron 1984, 40, 1061−1065.
(17) Kuehnert, S. M.; Maier, M. E. Org. Lett. 2002, 4, 643−646.
(18) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983,
12, 1593−1596.
(19) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155−4156.
(b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277−7287.
(20) Mancuso, A. J.; Swern, D. Synthesis 1981, 1981, 165−185.
(21) Initially, we intended to make use of the good dr of 13 and
synthesized the C-9 epimer of seco-acid 10 aiming at a late stage inversion
via Mitsunobu macrolactonization. Unfortunately, the desired macrolide
was not formed under these conditions.
(22) Ahn, C.; Correia, R.; DeShong, P. J. Org. Chem. 2002, 67, 1751−
1753.
(23) (a) Nakata, T.; Tanaka, T.; Oishi, T. Tetrahedron Lett. 1983, 24,
2653−2656. (b) Takahashi, T.; Miyazawa, M.; Tsuji, J. Tetrahedron Lett.
1985, 26, 5139−5142.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
General experimental procedures, spectroscopic data (1H,
13C, IR) and HRMS of all compounds (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
(24) Schmidt, A.-K. C.; Stark, C. B. W. Synthesis 2014, 46, 3283−3308.
(25) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888−890.
(26) Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981, 37,
2091−2096.
Notes
(27) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull.
Chem. Soc. Jpn. 1979, 52, 1989−1993.
The authors declare no competing financial interest.
(28) Shiina, I.; Kubota, M.; Oshiume, H.; Hashizume, M. J. Org. Chem.
2004, 69, 1822−1830.
ACKNOWLEDGMENTS
We thank A.-K. Sassnau, I. Heing genannt Becker, R. Koll and J.
Spottel (University of Hamburg) for their experimental
contribution to this work. We are also grateful to the Fonds der
■
(29) Mulzer, J.; Bruntrup, G. Chem. Ber. 1982, 115, 2057−2075.
̈
(30) Luengo, J. I.; Koreeda, M. Tetrahedron Lett. 1984, 25, 4881−4884.
(31) (a) Mukaiyama, T.; Usui, M.; Saigo, K. Chem. Lett. 1976, 5, 49−50.
(b) Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1979, 18, 707−721.
(32) For early work on diastereoselective epoxidations using macro-
cyclic stereocontrol, see: (a) Still, W. C.; Romero, A. G. J. Am. Chem. Soc.
1986, 108, 2105−2106. (b) Vedejs, E.; Buchanan, R. A.; Watanabe, Y. J.
Am. Chem. Soc. 1989, 111, 8430−8438.
̈
ChemischenIndustrie(FCI)forfinancialsupportofthisresearch.
REFERENCES
■
(1) Lu, S.; Kurtan
́
, T.; Yang, G.; Sun, P.; Man
́
di, A.; Krohn, K.; Draeger,
(33) A similar instantaneous transannular epoxide opening was
observed during the synthesis of Englerin A: Radtke, L.; Willot, M.;
S.; Schulz, B.; Yi, Y.; Li, L.; Zhang, W. Eur. J. Org. Chem. 2011, 2011,
5452−5459.
Sun, H.; Ziegler, S.; Sauerland, S.; Strohmann, C.; Frohlich, R.;
̈
́ ́
(2) Lu, S.; Sun, P.; Li, T.; Kurtan, T.; Mandi, A.; Antus, S.; Krohn, K.;
Habenberger, P.; Waldmann, H.; Christmann, M. Angew. Chem., Int.
Draeger, S.; Schulz, B.; Yi, Y.; Li, L.; Zhang, W. J. Org. Chem. 2011, 76,
9699−9710.
Ed. 2011, 50, 3998−4002.
(34) Laganis, E. D.; Chenard, B. L. Tetrahedron Lett. 1984, 25, 5831−
(3) Vadhadiya, P. M.; Rout, J. K.; Ramana, C. V. Tetrahedron 2015, 71,
9088−9094.
5834.
(4) Yadav, J. S.; Pandurangam, T.; Suman Kumar, A.; Adi Narayana
Reddy, P.; Prasad, A. R.; Subba Reddy, B. V.; Rajendraprasad, K.;
Kunwar, A. C. Tetrahedron Lett. 2012, 53, 6048−6050.
(5) Rej, R. K.; Nanda, S. Eur. J. Org. Chem. 2014, 2014, 860−871.
D
Org. Lett. XXXX, XXX, XXX−XXX