Frija et al.
antihypertension activity and as angiotensin II receptor antago-
nists, useful for treating congestive heart failure and in prevent-
ing cardiac hypertrophy. The tetrazolic ring has also been used
to modify the structure of the heme environment in myoglobin
through incorporation of the N-tetrazol-5-yl histidine unit.7 The
3′-tetrazolo-3′-deoxythymidines were the first approved drugs
for AIDS treatment, and several tetrazole derivatives have been
explored for antituberculotic activity.8,9 Furthermore, a wide
range of compounds with the tetrazol-1-yl acetic acid structure
have been claimed as aldose reductase inhibitors for the
treatment and prevention of diabetes complications. Tetrazoles
are also used as artificial sweeteners, plant growth regulators,
herbicides and fungicides,10 in photography,11 and as gas-
generating agents in airbags.12
FIGURE 1. Hydrogenolysis and thermal isomerization of 5-allyloxy-
The relevance of tetrazolyl compounds stimulated research
in their structure and reactivity. Special attention has been
devoted to heteroaromatic ethers derived from tetrazole, with
important practical uses as intermediate compounds in the
transformation of alcohols.13-15 Compounds bearing an allylic
alcohol function are often vital structural units of biologically
active systems and have also attracted widespread attention as
key intermediates in synthesis.16 Previously, we have reported
that selective hydrogenolysis of the C-OH bond of allyl
alcohols can be achieved conveniently by first reacting the
alcohol with a 5-chloro-1-aryltetrazole17 so as to form the
heteroaromatic allyl ether 1, Figure 1, which will then undergo
smooth heterogeneously catalyzed transfer hydrogenolysis to
form the alkene 3, corresponding to the allyl group, and the
aryltetrazolone 4.18 In ethers 1, which can be regarded as
imidates, the heteroaromatic group together with an oxygen atom
from the original allyl alcohol acts as an excellent leaving group
in catalyzed ipso substitutions.
1-aryl-tetrazoles.
N-allyl isomers 2.19 Thermal O to N migration of the allyl group
in a series of 5-allyltetrazolyl compounds 1, Figure 1, proceeds
exclusively in a [3,3] sense through a polar chairlike transition
state, to give N-allyl-tetrazolones 2 as sole products.19 This
behavior is similar to the notionally comparable general Cope
rearrangement, which proceeds through an allowed [3,3] mech-
anism.20
Tetrazoles are known to exhibit a very interesting and rich
photochemistry. A literature survey revealed that photolysis of
1,4-dihydro-5H-tetrazole derivatives, both in solution and
isolated in low-temperature matrixes, generally results in the
elimination of N2. However, in several cases, it is unknown
whether the loss of N2 and formation of the final products occurs
in a concerted process or whether biradicals or zwitterions are
involved as intermediates.21 In other substituted tetrazoles, the
nature of the substituents present in the tetrazole ring was found
to strongly affect the final products. However, as for the
unsubstituted tetrazole, the main photoreaction path is either
the molecular nitrogen elimination or the ring-cleavage [3+2]
cycloelimination, leading to the production of azides.21-27
A selective heterogeneous catalytic transfer reduction of such
allyl ethers is quite remarkable, because it successfully competes
with hydrogenation of the double bond and also with the
relatively easy [3,3]-sigmatropic rearrangement to give the
In view of the widespread interest in tetrazoles and allylic
compounds, the photochemistry of the allylic derivatives of
tetrazole is now under investigation in our laboratories. In the
present work, we describe the photochemistry (λ ) 254 nm) of
4-allyl-tetrazolones, 2a-c, Figure 2, in solution. A mechanism
of photocleavage for these tetrazolyl derivatives is proposed.
(6) Hashimoto, Y.; Ohashi, R.; Kurosawa, Y.; Minami, K.; Kaji, H.;
Hayashida, K.; Narita, H.; Murata, S. J. CardioVasc. Pharmacol. 1998, 31,
568.
(7) Desarro, A.; Ammendola, D.; Zappala, M.; Grasso, S.; Desarro, G.
B. Antimicrob. Agents Chemother. 1995, 39, 232.
(8) Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji, M.;
Komurasaki, T.; Tsuzuki, H.; Maekawa, R.; Yoshioka, T.; Kawada, K.;
Sugita, K.; Ohtani, M. J. Med. Chem. 1998, 41, 640.
(9) Abell, A. D.; Foulds, G. J. J. Chem. Soc., Perkin Trans. 1 1997, 17,
2475.
(19) (a) Cristiano, M. L. S.; Johnstone, R. A. W. J. Chem. Soc., Perkin
Trans. 2 1997, 489. (b) Cristiano, M. L. S.; Johnstone, R. A. W. J. Chem.
Res. 1997, 164.
(10) Sandmann, G.; Schneider, C.; Boger, P. Z. Naturforsch., C: Biosci.
1996, 51, 534.
(11) Koldobskii, G. I.; Ostrovskii, V. A.; Poplavskii, V. S. Khim.
Geterotsikl. Soedin. 1981, 10, 1299.
(12) Zhao-Xu, C.; Heming, X. Int. J. Quantum Chem. 2000, 79, 350.
(13) Arau´jo, N. C. P.; Brigas, A. F.; Cristiano, M. L. S.; Frija, L. M. T.;
Guimara˜es, E. M. O.; Loureiro, R. M. S. J. Mol. Catal. A: Chem. 2004,
215, 113.
(14) Frija, L. M. T.; Cristiano, M. L. S.; Guimara˜es, E. M. O.; Martins,
N. C.; Loureiro, R. M. S.; Bikley, J. J. Mol. Catal. A: Chem. 2005, 242,
241.
(15) Arau´jo, N. C. P.; Barroca, P. M. M.; Brigas, A. F.; Cristiano, M. L.
S.; Johnstone, R. A. W.; Loureiro, R. M. S.; Pena, P. C. A. J. Chem. Soc.,
Perkin Trans. 1 2002, 9, 1213.
(20) (a) Woodward, R. B.; Hoffmann, R. The ConserVation of Orbital
Symmetry; Verlag Chemie, GmbH: Weinheim, Germany, 1970. (b) Ito,
H.; Taguchi, T. Chem. Soc. ReV. 1999, 28, 43. (c) Ziegler, F. E. Chem.
ReV. 1988, 88, 1423. (d) Dessolin, M.; Eisenstein, O. K.; Golfier, M.; Prange,
T.; Sautet, P. G. N. J. Chem. Soc., Chem. Commun. 1992, 132. (e) Boudjabi,
S.; Dewynter, G.; Montero, J. L. Synlett 2000, 5, 716. (f) Metz, P.; Mues,
C.; Schoop, A. Tetrahedron 1992, 48, 1071.
(21) Dunkin, I. R.; Shields, C. J.; Quast, H. Tetrahedron 1989, 45, 259.
(22) Chae, Y. B.; Chang, K. S.; Kim, S. S. Taehan Hwahakhoe Chi 1967,
11, 85.
(23) Awadallah, A.; Kowski, K.; Rademacher, P. J. Heterocycl. Chem.
1997, 34, 113.
(16) (a) Kumar A.; Dittmer, D. C. J. Org. Chem. 1994, 59 (9), 4760. (b)
Adam, W.; Peters, K.; Reuz, M. Angew. Chem., Int. Ed. Engl. 1994, 33,
1107. (c) Bergmeier, S. C.; Stanchina, D. M. Tetrahedron Lett. 1995, 36,
4533.
(17) Bugalho, S. C. S.; Lapinskii, L.; Cristiano, M. L. S.; Frija, L. M.
T.; Fausto, R. Vib. Spectrosc. 2002, 30, 213.
(24) Go´mez-Zavaglia, A.; Reva, I. D.; Frija, L.; Cristiano, M. L.; Fausto,
R. J. Phys. Chem. A 2005, 109, 7967.
(25) Go´mez-Zavaglia, A.; Reva, I. D.; Frija, L.; Cristiano, M. L.; Fausto,
R. J. Mol. Struct. 2005, doi: 10.1016/j.molstruc.2005.08.019.
(26) Go´mez-Zavaglia, A.; Reva, I. D.; Frija, L.; Cristiano, M. L.; Fausto,
R. J. Photochem. Photobiol., A 2005, doi: 10.1016/j.jphotochem.2005.08.021.
(27) Go´mez-Zavaglia, A.; Reva, I. D.; Frija, L.; Cristiano, M. L. S.;
Fausto, R. J. Photochem. Photobiol., A 2005, 179, 243.
(18) Cristiano, M. L. S.; Johnstone, R. A. W.; Price, P. J. J. Chem. Soc.,
Perkin Trans. 1 1996, 1453.
3584 J. Org. Chem., Vol. 71, No. 9, 2006