Journal of the American Chemical Society
Article
Chem. 1983, 48, 2120−2122. (e) Tamao, K.; Ishida, N. J. Organomet.
Chem. 1984, 269, c37−c39. (f) Tamao, K.; Kumada, M.; Maeda, K.
Tetrahedron Lett. 1984, 25, 321−324. (g) Sato, K.; Kira, M.; Sakurai,
H. Tetrahedron Lett. 1989, 30, 4375−4378. (h) Tamao, K.; Hayashi,
T.; Ito, Y. Frontiers of Organosilicon Chemistry; The Royal Society of
Chemistry: Cambridge, 1991. (i) Tamao, K. Proc. Jpn. Acad., Ser. B
2008, 84, 123−133. (j) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52,
7599−7662. (k) Fleming, I. Chemtracts: Org. Chem. 1996, 1−64.
(4) (a) For the related Fleming oxidation, see: Fleming, I.; Henning,
R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem. Soc., Perkin
Trans. 1 1995, 317−337. (b) Fleming, I.; Henning, R.; Plaut, H. J.
Chem. Soc., Chem. Commun. 1984, 29−31.
(5) (a) Rayment, E. J.; Summerhill, N.; Anderson, E. A. J. Org. Chem.
2012, 77, 7052−7060. (b) Bracegirdle, S.; Anderson, E. A. Chem.
Commun. 2010, 46, 3454−3456. (c) Sarkar, D.; Gevorgyan, V. Chem. -
Eur. J. 2016, 22, 11201−11204. (d) Cho, S. H.; Hartwig, J. F. J. Am.
Chem. Soc. 2013, 135, 8157−8160. (e) Simmons, E. M.; Hartwig, J. F.
J. Am. Chem. Soc. 2010, 132, 17092−17095. (f) Cordonnier, M.-C. A.;
Kan, S. B. J.; Gockel, B.; Goh, S. S.; Anderson, E. A. Org. Chem. Front.
2014, 1, 661−673. (g) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009,
131, 7502−7503. (h) Tlais, S. F.; Lam, H.; House, S. E.; Dudley, G. B.
J. Org. Chem. 2009, 74, 1876−1885. (i) Lam, H.; House, S. E.; Dudley,
G. B. Tetrahedron Lett. 2005, 46, 3283−3285. (j) For Tamao
conditions see: Sunderhaus, J. D.; Lam, H.; Dudley, G. B. Org. Lett.
2003, 5, 4571−4573.
(21) Modelling is based on the first 50% conversion, with the
concentration of H2O2 assumed constant. See the SI for details.
(22) Relative rate coefficients have been normalized with respect to
silanol oxidation (krel = 1 s−1). Relative second order rate coefficients
for the formation of the disiloxane 13b were also modeled. The
relative rate coefficient for formation of 13b from 10b and 11b was k3
= 20.2 s−1 mol−1 dm3. The relative rate coefficient for the formation of
13b from two molecules of 11b was 4.1 × 10−7 s−1 mol−1 dm3. The
concentration of H2O2 is assumed constant in these calculations.
(23) The extreme of this interaction in a basic medium would be
deprotonation of the silanol; however, the presence of silanolate ions
was not detected spectroscopically.
(24) These experiments were run in triplicate. See the SI for reaction
profiles, which gave identical rate data. For example, the oxidation of
the methoxysilane under fluoride-free conditions in d4-MeOD using a
standardized degassing procedure gave three initial rate coefficients of
5.316 × 10−6, 5.322 × 10−6 and 5.312 × 10−6 mol dm−3 s−1, with r2
values of 0.92, 0.99, and 0.99 respectively; %RSD (relative standard
deviation) = 0.082.
(25) For this reason, reactions in MeOH were run at increased
dilution (0.1M). See the SI for details of the optimization of
conditions, and consistency of kinetic data.
(26) Corriu, R. J. P.; Guerin, C.; Henner, B. J. L.; Wong Chi Man, W.
W. C. Organometallics 1988, 7, 237−238.
(27) Kunai, A.; Sakurai, T.; Toyoda, E.; Ishikawa, M. Organometallics
1996, 15, 2478−2482.
(6) For the palladium-catalyzed conversion of aryltrimethylsilanes to
phenolic acetates, see: Gondo, K.; Oyamada, J.; Kitamura, T. Org. Lett.
2015, 17, 4778−4781.
(7) (a) Goh, S. S.; Chaubet, G.; Gockel, B.; Cordonnier, M.-C. A.;
Baars, H.; Phillips, A. W.; Anderson, E. A. Angew. Chem., Int. Ed. 2015,
54, 12618−12621. (b) Goh, S. S.; Baars, H.; Gockel, B.; Anderson, E.
A. Org. Lett. 2012, 14, 6278−6281. (c) Tun, M. K. M.; Wustmann, D.-
J.; Herzon, S. B. Chem. Sci. 2011, 2, 2251−2253. (d) Cordonnier, M.-
C. A.; Kan, S. B. J.; Anderson, E. A. Chem. Commun. 2008, 5818−
5820.
(28) The Si−F 19F NMR peak at −165.1 ppm is masked when using
hexafluorobenzene as internal standard. These NMR spectra are run in
the absence of this internal standard.
(29) Reaction using 3 equiv of H2O2 did not reach completion after
24 h, and fluorosilane remained after this time. We note that the
fluorosilane could arise from a number of reaction pathways, including
breakdown of fluoride-peroxide ate complexes.
(30) We thank a reviewer for the helpful suggestion to analyze the
LFER data using the Swain−Lupton method. See: Swain, C. G.;
Unger, S. H.; Rosenquist, N. R.; Swain, M. S. J. Am. Chem. Soc. 1983,
105, 492−502.
(31) We suggest that the reduced susceptibility of the diarylsilane to
electronic effects could reflect the difference in reactivity effects for this
substrate class, as opposed to an arylmethylsilane.
(8) Mader, M. M.; Norrby, P.-O. J. Am. Chem. Soc. 2001, 123, 1970−
1976.
(9) Mader, M. M.; Norrby, P.-O. Chem. - Eur. J. 2002, 8, 5043−5048.
(10) For examples of the oxidation of arylfluorosilanes without
additional fluroide promoter, see: Brough, P. A.; Fisher, S.; Zhao, B.;
Thomas, R. C.; Snieckus, V. Tetrahedron Lett. 1996, 37, 2915−2918.
(11) For earlier work on migratory aptitude, see: Buncel, E.; Davies,
A. G. J. Chem. Soc. 1958, 1550−1556.
(12) (a) Deiters, J. A.; Holmes, R. R. J. Am. Chem. Soc. 1990, 112,
7197−7202. (b) Brefort, J. L.; Corriu, R. J. P.; Guerin, C.; Henner, B.
J. L.; Wong Chi Man, W. W. C. Organometallics 1990, 9, 2080−2085.
(c) Holmes, R. R. Chem. Rev. 1990, 90, 17−31. (d) Bassindale, A. R.;
Parker, D. J.; Taylor, P. G.; Turtle, R. Z. Anorg. Allg. Chem. 2009, 635,
1288−1294.
(13) DiLauro, A. M.; Seo, W.; Phillips, S. T. J. Org. Chem. 2011, 76,
7352−7358.
(14) For the related observation of the conversion of fluorosilanes to
silanols and methoxysilanes, see: Knolker, H.-J.; Wanzl, G. Synlett
̈
1995, 1995, 378−382.
(15) The heightened reactivity of aryloxysilyl ethers over alkoxysilyl
ethers towards basic hydrolysis has also been noted by Corriu, see:
Corriu, R. J. P.; Guerin, C.; Henner, B. J. L.; Wang, Q. Organometallics
1991, 10, 3200−3205.
(16) For a review on the generation of silanols from hydrosilanes,
see: Jeon, M.; Han, J.; Park, J. ACS Catal. 2012, 2, 1539−1549.
(17) Lee, M.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2000, 122, 12011−
12012.
(18) See the SI for details of the identification of various key reaction
intermediates through comparison with authentic materials.
(19) We suggest that the lack of an observable lag in product
formation from the p-CN hydrosilane (Figure 1) is due to a much
higher rate of silanol-methoxysilane equilibration, and methoxysilane
oxidation, which masks the expected lag.
(20) Aryldisiloxanes are poor substrates for oxidation, see ref 5a.
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX