Page 5 of 7
Journal of the American Chemical Society
(9) For reviews on transition metal-catalyzed stereoselective
ASSOCIATED CONTENT
synthesis of highly substituted olefins, see: (a) Negishi, E.-I.; Huang,
Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008,
41, 1474. (b) Polák, P.; Vá ň ová, H.; Dvo ř ák, D.; Tobrman, T.
Tetrahedron Lett. 2016, 57, 3684.
1
2
3
Supporting Information.
The Supporting Information is available free of charge on
4
5
6
7
8
9
the
ACS
publication
website
at
(10) For
a review on the stereoselective construction of
Computational details,
tetrasubstituted olefins using ynolate, see: Shindo, M.; Matsumoto, K.
Top. Curr. Chem. 2012, 327, 1.
(11) For recent reviews on olefin metathesis, see: (a)
Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746. (b)
Paek, S.-M. Molecules 2012, 17, 3348. (c) Mukherjee, N.; Planer, S.;
Grela, K. Org. Chem. Front. 2018, 5, 494.
(12) (a) Smith, M. B.; March, J. March’s Advanced Organic
Chemistry, 5th ed.; John Wiley & Sons, Inc.: New York, 2001. (b)
Modern Carbonyl Olefination; Takeda, T., Ed.; Wiley-VCH:
Weinheim, 2004.
(13) For recent examples of the stereoselective construction of
tetrasubstituted olefins, see: (a) Ragno, D.; Bortolini, O.; Fantin, G.;
Fogagnolo, M.; Giovannini, P. P.; Massi, A. J. Org. Chem. 2015, 80,
1937. (b) Saini, V.; O’Dair, M.; Sigman, M. S. J. Am. Chem. Soc. 2015,
137, 608. (c) Dai, J.; Wang, M.; Chai, G.; Fu, C.; Ma, S. J. Am. Chem.
Soc. 2016, 138, 2532. (d) Li, Y.; Mgck-Lichtenfeld, C.; Studer, A.
Angew.Chem. Int. Ed. 2016, 55, 14435. (e) Domański, S.; Chaładaj,
W. ACS Catal. 2016, 6, 3452. (f). Lim, N.-K.; Weiss, P.; Li, B. X.;
McCulley, C. H.; Hare, S. R.; Bensema, B. L.; Palazzo, T. A.; Tantillo,
D. J.; Zhang, H.-M.; Gosselin, F. Org. Lett. 2017, 19, 6212. (g)
Naveen, K.; Nikson, S. A.; Perumala, P. T. Adv. Synth. Catal. 2017,
359, 2407. (h) Li, B. X.; Le, D. N.; Mack, K. A.; McClory, A.; Lim,
N.-K.; Cravillion, T.; Savage, S.; Han, C.; Collum, D. B.; Zhang, H.
M.; Gosselin, F. J. Am. Chem. Soc. 2017, 139, 10777. (i) Mack, K. A.;
McClory, A.; Zhang, H.; Gosselin, F.; Collum, D. B. J. Am. Chem. Soc.
2017, 139, 12182. (j) Liao, F-M., Cao, Z-Y.; Yu, J-S.; Zhou, J.
Angew.Chem. Int.Ed. 2017, 56, 2459. (k) Ikemoto, H.; Tanaka, R.;
Sakata, K.; Kanai, M.; Yoshino, T.; Matsunaga, S. Angew.Chem. Int.
Ed. 2017, 56, 7156. (l) Shimkin, K. W.; Montgomery, J. J. Am. Chem.
Soc. 2018, 140, 7074.
1
experimental procedures, spectral data, H and 13C NMR
spectra for all compounds including pertinent NOEs.
AUTHOR INFORMATION
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
We sincerely thank the National Sciences and Engineering
Research Council (NSERC) for a Discovery Grant and
Queen’s University for financial support. NSERC is also
thanked for supporting a Tier 1 Canada Research Chair
(PAE). We also acknowledge financial support from the
Institute for Basic Science (H.R., J.Y.P. and M.H.B.; Grant
N°: IBS-R10-D1) in Korea.
REFERENCES
(1) Ojima, I. Catalytic Asymmetric Catalysis in Organic Synthesis.
3rd Ed. Wiley-VCH, New York, 2000.
(2) For reviews on DKR and DYKAT, see: (a) Noyori, R.;
Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36. (b)
Caddick, S.; Jenkins, K. Chem. Soc. Rev. 1996, 25, 447. (c) Huerta, F.
F.; Minidis, A. B. E.; Backvall, J.-E. Chem. Soc. Rev. 2001, 30, 321.
(d) Wencel-Delord, J.; Colobert, F. Synthesis 2016, 48, 2981. (e) Bhat,
V.; Welin, E. R.; Guo, X.; Stoltz, B. M. Chem. Rev. 2017, 117, 4528.
(3) (a) Takahashi, A.; Kirio, Y.; Sodeoka, M.; Sasai, H.; Shibasaki,
M. J. Am. Chem. Soc. 1989, 111, 643. (b) Zaman, L.; Arakawa, O.;
Shimosu, A.; Onoue, Y.; Nishio, S.; Shida, Y.; Noguchi, T. Toxicon
1997, 35, 205. (c) Pilli, R. A.; Ferreira de Oliveira, M. C. Nat. Prod.
Rep. 2000, 17, 117.
(4) (a) Connor, C. E.; Norris, J. D.; Broadwater, G.; Willson, T. M.;
Gottardis, M. M.; Dewhirst, M. W.; McDonnell, D. P. Cancer Res.
2001, 61, 2917. (b) Jordan, V. C. Nat. Rev. Drug Discov. 2003, 2, 205.
(c) Zhao, Y.; Ren, J.; Harlos, K.; Jones, D. M.; Zeltina, A.; Bowden, T.
A.; Padilla-Parra, S.; Fry, E. E.; Stuart, D. I. Nature 2016, 535, 169.
(5) For reviews on molecular switches and applications to materials
using tetrasubstituted olefins, see: (a) Feringa, B. L.; van Delden, R.
A.; Koumura, N.; Geerstema, E. M. Chem. Rev. 2000, 100, 1789. (b)
Vicario, J.; Walko, M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc.
2006, 128, 5127. (c) Browne, W. R.; Pollard, M. M.; de Lange, B.;
Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 12412. (d)
Tietze, L. F.; Waldecker, B.; Ganapathy, D.; Eichhorst, C.; Lenzer, T.
K. O.; Reichmann, S. O.; Stalke, D. Angew. Chem., Int. Ed. 2015, 54,
10317.
(14) For an example of the challenges in equilibrating E- and Z-
trisubstituted olefins, see: Cuvigny, T.; Herve du Penhoat, C.; Julia,
M. Tetrahedron Lett. 1980, 21, 1331.
(15) For reviews on the selective isomerization of alkenes, see: (a)
Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475. (b) Liu, R. S.
H.; Liu, J. J. Nat. Prod. 2011, 74, 512. (c) Metternich, J. B.; Gilmour,
R. Synlett 2016, 27, 2541. (d) Pearson, C. M.; Snaddon, T. N. ACS
Cent. Sci. 2017, 3, 922 and pertinent references cited therein. (e) For
an example of photo isomerization of E/Z olefins, see: Metternich, J.
B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137, 11254. (f) For an
example of migratory isomerization of terminal alkenes, see: Crossley,
S. W. M.; Barabe, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136,
16788. (g) For metal-catalyzed olefin transposition, see: Larionov, E.;
Li, H.; Mazet, C. Chem. Commun. 2014, 50, 9816. (h) Pünner, F.;
Schmidt, A.; Hilt, G. Angew. Chem., Int. Ed. 2012, 51, 1270. (i)
Larsen, C. R.; Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2014,
136, 1226.
(16) For the challeneges with the equilibration of tri- and
tetrasubstituted E/Z-olefin mixtures of alkenyl cyanohydrins, see:
Turnbull, B. W. H.; Oliver, S.; Evans, P. A. J. Am. Chem. Soc. 2015,
137, 15374.
(17) NaDA was prepared via an adaptation of a procedure used for
KDA, see: Raucher, S.; Koolpe, G. A. J. Org. Chem. 1978, 43, 3794.
(18) For an extensive investigation into different metal amide bases
and counter-ions, which delineate the importance of using NaDA, see
the Supporting Information.
(6) (a) Morikawa, K.; Park, J.; Andersson, P. G.; Hashiyama, T.;
Sharpless, K. B. J. Am. Chem. Soc. 1993, 115, 8463. (b) Brandes, B.
D.; Jacobsen, E. N. Tetrahedron Letters, 1995, 36, 5123. (c) Troutman,
M. V.; Appella, D. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
4916. (d) Kraft, S.; Ryan, K.; Kargbo, R. B. J. Am. Chem. Soc. 2017,
139, 11630. (e) Sunada, Y.; Ogushi, H.; Yamamoto, T.; Uto, S.;
Sawano, M.; Tahara, A.; Tanaka, H.; Shiota, Y.; Yoshizawa, K.;
Nagashima, H. J. Am. Chem. Soc. 2018, 140, 4119. (f) Léonard, N. G.;
Chirik, P. J. ACS Catal. 2018, 8, 342. (g) Kou, X.; Shao, Q.; Ye, C.;
Yang, G.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 7587.
(19) The reaction was quenched with different proton sources (see
SI), albeit the results indicate that 1a is not equilibrated to a
geometrically pure isomer. This result is consistent with the DFT
calculations.
(20) Mandera, L. N.; Williams, C. M. Tetrahedron 2016, 72, 1133.
(21) An 2,6-difluoroarene example affords the product in
comparable yield, albeit with significantly lower selectivity (E/Z = 6:1),
which illustrates the necessity for the aryl group to be planar to
facilitate the equilibration (cf. Supporting Information).
(7) Harper, M. J. K.; Walpole, A. L. Nature 1966, 212, 87.
(8) For a general review on the synthesis of tetrasubstituted olefins,
see: Flynn, A. B.; Ogilvie, W. W. Chem. Rev. 2007, 107, 4698.
ACS Paragon Plus Environment