Inorg. Chem. 2003, 42, 7354−7356
Copper(I) Complexes of a Heavily Fluorinated â-Diketiminate Ligand:
Synthesis, Electronic Properties, and Intramolecular Aerobic
Hydroxylation
David S. Laitar, Casey J. N. Mathison, William M. Davis, and Joseph P. Sadighi*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AVenue,
Cambridge Massachusetts 02139
Received September 7, 2003
f
f
The aza-Wittig reaction between ArsNdPPh3 [Ar ) 3,5-
reactivity of copper(I) â-diketiminate complexes with di-
oxygen has been studied in detail.4
(CF ) C H ] and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione affords a
3 2
6 3
We have now prepared a heavily fluorinated â-diketimi-
nate ligand,5,6 1, by a convenient aza-Wittig reaction,7 and
synthesized several copper(I) complexes from it. This ligand
is quite electron-poor, as judged by an infrared study of
several related (â-diketiminate)copper(I) carbonyl complexes.
Despite its electron-poor metal center, a copper(I) â-diketim-
inate complex reacts readily with dioxygen, with clean ortho-
hydroxylation of a ligand N-aryl group.8 The ligand backbone
remains unaffected.
new, highly fluorinated â-diketimine, 1. Metalation by mesitylcopper-
(I) in benzene gives rise to the Cu(I) â-diketiminate as its η2-
benzene adduct, 2a. Copper(I) carbonyl complexes of 1, and of
three less-fluorinated analogues, have been generated in situ and
compared by IR spectroscopy; the two backbone CF groups exert
3
a stronger electronic influence than the four N-aryl CF groups.
3
Dinuclear adduct 2b reacts readily with O , leading to ortho-
2
f
hydroxylation of a ligand N-Ar group.
Ligand 1 is synthesized in good yield by the aza-Wittig
reaction of 2 equiv of [3,5-bis (trifluoromethyl)-phenylimino]-
triphenylphosphorane with 1,1,1,5,5,5-hexafluoro-2,4-pen-
tanedione in toluene at 90 °C. We have been unable to
prepare this ligand by traditional routes.9 Reaction of 1 with
The aerobic oxidation of organic substrates represents an
ongoing goal in synthetic catalysis.1 Copper(I) complexes,
which can react with dioxygen to form strong oxidants,2,3
some of them capable of C-H bond hydroxylation,3 are
interesting candidates for catalyst precursors. Recently, the
(4) (a) Dai, X.; Warren, T. H. Chem. Commun. 2001, 1998-1999. (b)
Spencer, D. J. E.; Aboelella, N. W.; Reynolds, A. M.; Holland, P. L.;
Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 2108-2109. (c) Spencer,
D. J. E.; Reynolds, A. M.; Holland, P. L.; Jazdzewski, B. A.; Duboc-
Toia, C.; Le Pape, L.; Yokota, S.; Tachi, Y.; Itoh, S.; Tolman, W. B.
Inorg. Chem. 2002, 41, 6307-6321. (d) Aboelella, N. W.; Lewis, E.
A.; Reynolds, A. M.; Brennessel, W. W.; Cramer, C. J.; Tolman, W.
B. J. Am. Chem. Soc. 2002, 124, 10660-10661.
(5) â-Diketimines formally derived from 1,1,1-trifluoro-2,4-pentanedione
have been synthesized: (a) Fustero, S.; de la Torre, M. G.; Pina, B.;
Fuentes, A. S. J. Org. Chem. 1999, 64, 5551-5556. Such ligands
have been used to advantage in catalysis: (b) Allen, S. D.; Moore, D.
R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124,
14284-14285.
(6) (a) The synthesis of N,N′-bis(2-mercaptophenyl) â-diketimines by
condensation of the aniline with 1,1,1,5,5,5-hexafluoro-2,4-pentanedi-
one has been reported, but no specific details are given: Sharma, R.
K.; Singh, Y.; Rai, A. K. Main Group Met. Chem. 2000, 23, 777-
780. (b) While this work was in progress, the N,N′-bis(2,6-diisopro-
pylphenyl) analogue of 1, and its lithium salt, were reported: Carey,
D. T.; Cope-Eatough, E. K.; Vilaplana-Mafe´, E.; Mair, F. S.; Pritchard,
R. G.; Warren, J. E.; Woods, R. J. Dalton Trans. 2003, 1083-1093.
(7) (a) For a review, see: Molina, P.; Vilaplana, M. J. Synthesis 1994,
1197-1218. (b) Preparation of R-diimines by this reaction: Zhong,
H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002, 124,
1378-1399.
(8) The synthesis and autoxidation of 2b have been presented in oral
form: Sadighi, J. P.; Laitar, D. S. Abstracts of Papers, 224th National
Meeting of the American Chemical Society, Boston, MA, Aug. 18-
22, 2002; American Chemical Society: Washington, DC, 2003; INOR-
318.
* To whom correspondence should be addressed. E-mail: jsadighi@
mit.edu.
(1) See for example: (a) Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4,
1043-1045. (b) Nishiyama, Y.; Nakagawa, Y.; Mizuno, N. Angew.
Chem., Int. Ed. 2001, 40, 3639-3641. (c) Do¨bler, C.; Mehltretter,
G.; Beller, M. Angew. Chem., Int. Ed. 1999, 38, 3026-3028. (d) Stahl,
S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37,
2180-2192.
(2) (a) Kitajima, N.; Moro-oka, Y. Chem. ReV. 1994, 94, 737-757. (b)
Karlin, K. D.; Kaderli, S.; Zuberbu¨hler, A. D Acc. Chem. Res. 1997,
30, 139-147. (c) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.;
Kaderli, S.; Young, V. G., Jr.; Que, L., Jr.; Zuberbu¨hler, A. D.; Tolman,
W. B. Science 1996, 271, 1397-1400. (d) Straub, B. F.; Rominger,
F.; Hofmann, P. Chem. Commun. 2000, 1611-1612. (e) Taki, M.;
Itoh, S.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 6203-6204.
(3) Selected references: (a) Pidcock, E.; Obias, H. V.; Zhang, C. X.;
Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 7841-
7847. (b) Holland, P. L.; Rodgers, K. R.; Tolman, W. B. Angew.
Chem., Int. Ed. 1999, 38, 1139-1142. (c) Itoh, S.; Taki, M.; Nakao,
H.; Holland, P. L.; Tolman, W. B.; Que, L., Jr. Angew. Chem., Int.
Ed. 2000, 39, 398-400. (d) Taki, M.; Teramae, S.; Nagatomo, S.;
Tachi, Y.; Kitagawa, T.; Itoh, S.; Fukuzumi, S. J. Am. Chem. Soc.
2002, 124, 6367-6377. (e) Mirica, L. M.; Vance, M.; Jackson Rudd,
D.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. J.
Am. Chem. Soc. 2002, 124, 9332-9333. (f) Zhang, C. X.; Liang, H.-
C.; Kim, E-i.; Shearer, J.; Helton, M. E.; Kim, E.; Kaderli, S.; Incarvito,
C. D.; Zuberbu¨hler, A. D.; Rheingold, A. L.; Karlin, K. D. J. Am.
Chem. Soc. 2003, 125, 634-635.
7354 Inorganic Chemistry, Vol. 42, No. 23, 2003
10.1021/ic035056j CCC: $25.00 © 2003 American Chemical Society
Published on Web 10/14/2003