Page 5 of 7
New Journal of Chemistry
DOI: 10.1039/C6NJ03984G
NJC
Paper
acid pinacol ester (9B). Both 2-bromothiophene and 3-
bromothiophene could react with pinacol vinylboronate to offer the
respective Heck coupling products (9C, 9D) in good yields and
pyridine species could also be transformed to the target Heck 2.
products (9F-9G) except 2-bromopyridine (no reaction). We suspect
that the electron density of C-Br bond in 2-bromopyridine is too low
for palladium catalyst to initiate oxidative addition. 5-Bromoindole
and 7-bromo-2H-benzo[b][1,4]oxazin-3(4H)-one were transformed
to corresponding Heck coupling products also in satisfying yield (9H-
9I). Then various 5-bromopyridines were used as substrates which
all gave the desired products in good yields (9J-9O).
and J. Liebscher, Chem. Rev., 2007, 107, 133-173; (e) K. C.
Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed.,
2005, 44, 4442-4489.
For reviews of the Heck reaction, see: (a) R. F. Heck, Acc.
Chem. Res., 1979, 12, 2470-2475; (b) R. F. Heck, Organic
Reactions, John Wiley & Sons, Inc., 1982, vol. 27; (c) P.
Chaloner, J. Organomet. Chem., 1998, 566, 299-300(292); (d)
J. T. Link, The Intramolecular Heck Reaction, John Wiley &
Sons, Inc., 2004; (e) N. Ei, C. Copéret, S. Ma, S. Y. Liou and F.
Liu, Chem. Rev., 1996, 27, 365-394; (f) M. Oestreich, Top
Organomet Chem., 2007, 24, 169-192; (g) I. P. B. And and A.
V. Cheprakov, Chem. Rev., 2000, 100, 3009-3066.
3.
C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot and V.
Snieckus, Angew. Chem., Int. Ed., 2012, 43, 5062-5085.
(a) R. Li and J. A. Stafford, Chapter 7. Structure-Based Design
and Characterization of Axitinib, John Wiley & Sons, Inc.,
2009; (b) D. H. Boschelli, D. Wang, A. S. Prashad, J. Subrath,
B. Wu, C. Niu, J. Lee, X. Yang, A. Brennan and D. Chaudhary,
Bioorg. Med. Chem. Lett., 2010, 20, 1965-1968; (c) L. Raj, T.
Ide, A. U. Gurkar, M. Foley, M. Schenone, X. Li, N. J. Tolliday,
T. R. Golub, S. A. Carr and A. F. Shamji, Nature, 2011, 475,
231-234; (d) E. R. Kessler, D. W. Bowles, T. W. Flaig, E. T. Lam
and A. Jimeno, Drugs of Today, 2012, 48, 633-644; (e) J.
Mason, D. C. C. Lin, X. Wei, Y. Che, Y. Yao, R. Kiarash, D.
Cescon, G. Fletcher, D. Awrey and M. Bray, Cancer Cell, 2014,
26, 163-176; (f) Y. H. Seo, J. K. Kim and J. G. Jun, Bioorg. Med.
Chem. Lett., 2014, 24, 5727-5730; (g) G. M. Keating, Drugs,
2015, 75, 1903-1913; (h) P. B. Sampson, Y. Liu, B. Forrest, G.
Cumming, S. W. Li, N. K. Patel, L. Edwards, R. Laufer, M.
Feher, F. Ban, D. E. Awrey, G. Mao, O. Plotnikova, R.
Hodgson, I. Beletskaya, J. M. Mason, X. Luo, V. Nadeem, X.
Wei, R. Kiarash, B. Madeira, P. Huang, T. W. Mak, G. Pan and
H. W. Pauls, J. Med. Chem., 2015, 58, 147-169.
Conclusions
4.
In conclusion, we have developed an effective method to prepare
tran-(het)arylvinylboronates. Detailed studies have showed that the
consistant of Pd2(dba)3 (5 mol%), P(t-Bu)3·HBF4 (10 mol%) and of
DIPEA (2 equiv.) in toluene at 95oC for 3 h under nitrogen was the
best condition in the reaction. The present work provides an easy
manipulated and inexpensive protocol that is effective and selective
to the synthesis of trans-vinyl boronates with wide substrate scope.
We believe this work will greatly benefit the development of
bioactive molecules and organic functional materials.
Experimental
General procedure for the Heck coupling of pinacol
vinylboronate with (het)arylbromides
A mixture of vinylboronate pinacol ester (2.2 mmol, 1.1 equiv.), the
corresponding aryl and hetaryl bromides (2.0 mmol, 1.0 equiv.),
DIPEA (4.0 mmol, 2.0 equiv.), Pd2(dba)3 (0.1 mmol, 5 mol%) and P(t-
Bu)3·HBF4 (0.2 mmol, 10 mol%) in dry toluene (8.0 mL) was stirred
at 95°C for 3 h under N2 atmosphere. Then the reaction mixture
was evaporated under vacuum. H2O (5 mL) was added to the
residual mixture. The mixture was extracted with ethyl acetate (10
mL x 3), and the combined organic layer was dried over anhydrous
Na2SO4, filtered and the solvent was evaporated under vacuum. The
residue was purified by silica gel chromatography using EtOAc/n-
hexene as eluent to afford the products.
5.
(a) J. Kulhánek, F. Bureš, T. Mikysek, J. Ludvík and O. Pytela,
Dyes & Pigments, 2011, 90, 48-55; (b) K. Itami, K. Tonogaki,
T. Nokami, Y. Ohashi and J. I. Yoshida, Angew. Chem., Int.
Ed., 2006, 45, 2404-2409; (c) K. Itami, K. Tonogaki, Y. Ohashi
and J. Yoshida, Org. Lett., 2004, 6, 4093-4096.
6.
7.
(a) M. Oestreich, Chapter 16. The Asymmetric Intramolecular
Mizoroki–Heck Reaction in Natural Product Total Synthesis,
John Wiley & Sons, Ltd, 2009; (b) A. B. D. And and L. E.
Overman, Chem. Rev., 2003, 103, 2945-2964.
Acknowledgements
(a) R. A. Batey and T. D. Quach, Pure Appl. Chem., 2002, 74,
43-55; (b) D. S. Matteson, Stereodirected Synthesis with
Organoboranes, Springer Berlin Heidelberg, 1995; (c) D. S.
Matteson, Journal of Organometallic Chemistry, 1996, 522,
161-161.
This work was supported by Natural Science Foundation of China
(No. 81502919) and China Postdoctoral Science Foundation (No.
2015M570790, No. 2016T90860). We thank Lihua Zhou of State Key
Laboratory of Biotherapy (Sichuan University) for NMR
measurements.
8.
(a) H. C. Brown, T. Hamaoka and N. Ravindran, J. Am. Chem.
Soc., 1973, 95, 5786-5788; (b) H. C. Brown, T. Hamaoka and
N. Ravindran, J. Am. Chem. Soc., 1973, 95, 6456-6457.
(a) H. C. Brown and J. B. J. Campbell, Aldrichimica Acta, 1981,
12, 3-11; (b) M. V. Rangaishenvi, B. Singaram and H. C.
Brown, J. Org. Chem., 1991, 56, 3286–3294.
References
9.
1.
(a) A. D. Meijere and F. Diederich, Chapter 12. Carbon-
Carbon Bond-Forming Reactions Mediated by
Organomagnesium Reagents, Wiley-VCH Verlag GmbH,
2008; (b) T. H. Riermeier, A. Zapf and M. Beller, Top. Catal.,
1997, 4, 301-309; (c) X. Chen, E. Keary. M, D. H. Wang and J.
Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094-5115; (d) L. Yin
10.
(a) H. C. Brown, D. Basavaiah, S. U. Kulkarni, N. G. Bhat and J.
V. N. V. Prasad, J. Org. Chem., 1988, 53, 239-246; (b) H. C.
Brown and N. G. Bhat, J. Org. Chem., 1988, 53, 6009-6013.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017
New J. Chem. | 5