Discovery of Antileishmanial Benzothiophenes
golipid biosynthesis seem to be responsible for tamoxifen’s
leishmanicidal activity (unpublished data). Future experi-
ments using the compounds identified in this work will be
directed at investigating whether they induce the same
biochemical modifications as tamoxifen.
(2007) Inactivation of the miltefosine transporter, LdMT,
causes miltefosine resistance that is conferred to the
amastigote stage of Leishmania donovani and persists
in vivo. Int J Antimicrob Agents;30:229–235.
6. Machado P.R., Ampuero J., Guimaraes L.H., Villasboas
L., Rocha A.T., Schriefer A., Sousa R.S., Talhari A.,
Penna G., Carvalho E.M. (2010) Miltefosine in the treat-
ment of cutaneous leishmaniasis caused by Leishmania
braziliensis in Brazil: a randomized and controlled trial.
PLoS Negl Trop Dis;4:e912.
7. Neves L.O., Talhari A.C., Gadelha E.P., Silva Junior
R.M., Guerra J.A., Ferreira L.C., Talhari S. (2011) A
randomized clinical trial comparing meglumine antimo-
niate, pentamidine and amphotericin B for the treat-
ment of cutaneous leishmaniasis by Leishmania
guyanensis. An Bras Dermatol;86:1092–1101.
8. Inocencio da Luz R., Romero G.A., Dorval M.E., Cruz
I., Canavate C., Dujardin J.C., Van Assche T., Cos P.,
Maes L. (2011) Drug susceptibility of Leishmania infan-
tum (syn. Leishmania chagasi) isolates from Brazilian
HIV-positive and HIV-negative patients. J Antimicrob
Chemother;66:677–679.
Conclusions and Future Directions
The directed screening of a 2-arylbenzothiophene library
based on the SERM BTP resulted in the discovery of a
novel class of potent antileishmanial agents. Structure–
activity studies indicate that the critical determinant for an-
tileishmanial potency is the presence of two basic side
chains. Representative compounds within this structural
class have shown consistent activity against all species
and stages of Leishmania in vitro although improvements
in selectivity are needed. As such, these compounds rep-
resent viable starting points for further optimization as an-
tileishmanial agents. Significantly, the most active
antileishmanial benzothiophenes lack the pharmacophore
for ER activity, and therefore address potential concerns
about the undesirable effects of using SERMs in women
and children with leishmaniasis.
9. Rojas R., Valderrama L., Valderrama M., Varona M.X.,
Ouellette M., Saravia N.G. (2006) Resistance to anti-
mony and treatment failure in human Leishmania (Vian-
nia) infection. J Infect Dis;193:1375–1383.
Acknowledgments
10. Altan N., Chen Y., Schindler M., Simon S.M. (1999)
Tamoxifen inhibits acidification in cells independent of
the estrogen receptor. Proc Natl Acad Sci
USA;96:4432–4437.
We thank Andrew S. Bell for the critical reading of the
manuscript. This work was supported by Grants #2011/
~
20484-7, Sao Paulo Research Foundation (FAPESP) and
11. O’Brian C.A., Liskamp R.M., Solomon D.H., Weinstein
I.B. (1985) Inhibition of protein kinase C by tamoxifen.
Cancer Res;45:2462–2465.
12. Mandlekar S., Kong A.N. (2001) Mechanisms of
tamoxifen-induced apoptosis. Apoptosis;6:469–477.
13. Cabot M.C., Giuliano A.E., Volner A., Han T.Y. (1996)
Tamoxifen retards glycosphingolipid metabolism in
human cancer cells. FEBS Lett;394:129–131.
473343/2012-6, Conselho Nacional de Desenvolvimento
Cientıfico e Tecnologico (CNPq). V.I.B. was supported by
a PNPD/CAPES fellowship (2289/2009).
ꢀ
ꢀ
Conflict of Interest
None.
14. Miguel D.C., Yokoyama-Yasunaka J.K., Andreoli W.K.,
Mortara R.A., Uliana S.R. (2007) Tamoxifen is effective
against Leishmania and induces a rapid alkalinization
of parasitophorous vacuoles harbouring Leishmania
(Leishmania) amazonensis amastigotes. J Antimicrob
Chemother;60:526–534.
15. Miguel D.C., Zauli-Nascimento R.C., Yokoyama-Yasu-
naka J.K.U., Katz S., Barbieri C.L., Uliana S.R.B.
(2009) Tamoxifen as a potential antileishmanial agent:
efficacy in the treatment of Leishmania braziliensis and
Leishmania chagasi infections. J Antimicrob Chemo-
ther;63:365–368.
References
1. den Boer M., Argaw D., Jannin J., Alvar J. (2011)
Leishmaniasis impact and treatment access. Clin
Microbiol Infect;17:1471–1477.
ꢀ
2. Alvar J., Velez I.D., Bern C., Herrero M., Desjeux P.,
Cano J., Jannin J., den Boer M., WHO Leishmaniasis
Control Team. (2012) Leishmaniasis worldwide and glo-
bal estimates of its incidence. PLoS ONE;7:e35671.
3. Murray H.W., Berman J.D., Davies C.R., Saravia N.G.
(2005)
cet;366:1561–1577.
4. Bern C., Maguire J.H., Alvar J. (2008) Complexities of
assessing the disease burden attributable to leishmani-
asis. PLoS Negl Trop Dis;2:e313.
16. Miguel D.C., Yokoyama-Yasunaka J.K., Uliana S.R.
(2008) Tamoxifen is effective in the treatment of Leish-
mania amazonensis infections in mice. PLoS Negl Trop
Dis;2:e249.
Advances
in
leishmaniasis.
Lan-
17. Karimian E., Chagin A.S., Gjerde J., Heino T., Lien
€
E.A., Ohlsson C., Savendahl L. (2008) Tamoxifen
5. Seifert K., Perez-Victoria F.J., Stettler M., Sanchez-
Canete M.P., Castanys S., Gamarro F., Croft S.L.
impairs both longitudinal and cortical bone growth in
young male rats. J Bone Miner Res;23:1267–1277.
Chem Biol Drug Des 2014; 83: 289–296
295