10.1002/anie.202004328
Angewandte Chemie International Edition
COMMUNICATION
Can. J. Chem. 1996, 74, 1369; d) D. J. Miller, C. J. Moody, C. N. Morfitt,
Aust. J. Chem. 1999, 52, 97; e) Y. Zhang, J. B. Wang, Chem. Commun.
2009, 5350; f) J. N. Johnston, H. Muchalski, T. L. Troyer, Angew. Chem.,
Int. Ed. 2010, 49, 2290; Angew. Chem. 2010, 122, 2340; g) C. W. Zhai,
D. Xing, C. C. Jing, J. Zhou, C. J. Wang, D. W. Wang, W. H. Hu, Org.
Lett. 2014, 16, 2934.
We are grateful to the National Science Foundation
(CHE−1763168) for their funding of this research. The NMR
spectrometer used in this research was supported by a grant from
the National Science Foundation (CHE−1625963) and funding for
the X-ray diffractometer was supported by CHE-1920057.
[8]
[9]
a) P. J. Stang, M. H. Rappoport, M. Hannack, and L. B. Subramanian,
Vinyl Cations, Academic Press, New York, 1979. b) T.Okuyama, Acc.
Chem. Res. 2002, 35, 12.
Keywords: trifluoromethanesulfonimide • vinyldiazo
compounds• Friedel-Crafts coupling • dedinitrogenation • vinyl
cation
a) M. Niggeman, S. Gao, Angew. Chem. Int. Ed. 2018, 57, 16942, Angew.
Chem. 2018, 130, 17186; b) S. Schroeder, C. Strauch, N. Gaelings, M.
Niggemann, Angew. Chem. Int. Ed. 2019, 58, 5119, Angew. Chem. 2019,
131, 5173. c) T. Okuyama, M. Fujita in “Recent Developments in
Carbocation and Onium Ion Chemistry”, K. L. Laali, Ed. ACS Symposium
Series, Vol. 965, Ch. 4, 2007.
[1]
a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds: From Cyclopropanes to
Ylides, Wiley, New York, 1998; b) H. M. L. Davis, Y. J. Lian, Acc. Chem.
Res. 2012, 45, 923; c) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R.
Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981; d) N. R.
Candeias, R. Paterna, P. M. P. Gois, Chem. Rev. 2016, 116, 2937; e) M.
Marinozzi, F. Pertusati, M. Serpi, Chem. Rev. 2016, 116, 13991; f) L. Liu,
J. Zhang, Chem. Soc. Rev. 2016, 45, 506.
[10] U. Biermann, R. Koch, J. O. Metzger, Angew. Chem. Int. Ed. 2006, 45,
3076; Angew. Chem. 2006, 118, 3146.
[11] F. Zhang, S. Das, A. J. Walkinshaw, A. Casitas, M. Taylor, M. G. Suero,
M. J. Gaunt, J. Am. Chem. Soc. 2014, 136, 8851.
[12] R. Pellicciari, B. Natalini, B. M. Sadeghpour, M. Marinozzi, J. P. Snyder,
B. L. Williamson, J. T. Kuethe, A. Padwa, J. Am. Chem. Soc. 1996, 118,
1.
[2]
[3]
a) R. A. Moss, M. P. Doyle, Contemporary Carbene Chemistry, Wiley,
New York, 2013, pp 404-451; b) Q. Q. Chen, Y. M. Deng, M. Lankelma,
M. P. Doyle, Chem. Soc. Rev. 2017, 46, 5425.
[14] a) B. Shao, A. L. Bagdasarian, S. Popov, H. M. Nelson, Science 2017,
355, 1403; b) S. Popov, B. Shao, A. L. Bagdasarian, T. R. Benton, L. Zou,
Z. Yang, K. N. Houk, H. M. Nelson, Science 2018, 361, 381; c) B.
Wigman, S. Popov, A. L. Bagdasarian, B. Shao, T. R. Benton, C. G.
Williama, S. P. Fisher, V. Lavallo, K. N. Houk, H. M. Nelson, J. Am. Chem.
Soc. 2019, 141, 9140.
a) X. C. Wang, Q. M. Abrahams, P. Y. Zavalij, M. P. Doyle, Angew. Chem.
Int. Ed. 2012, 51, 5907; Angew. Chem. 2012, 124, 6009; b) X. C. Xu, P.
Y. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2013, 135, 12439; c) C. M.
Qin, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 14516.
a) J. Barluenga, L. Riesgo, L. A. López, E. Rubio, M. Tomάs, Angew.
Chem. Int. Ed. 2009, 48, 7569; Angew. Chem. 2012, 121, 7705; b) E.
López, L. A. López, Angew. Chem. Int. Ed. 2017, 56, 5121; Angew.
Chem. 2017, 129, 5203.
[4]
[15] a) C. Draghici, M. Brewer, J. Am. Chem. Soc. 2008, 130, 3766; b) S. E.
Cleary, X. Li, L. C. Yang, K. N. Houk, X. Hong, M. Brewer, J. Am. Chem.
Soc. 2019, 141, 3558.
[5]
[6]
a) V. V. Pagar, A. M. Jadhav, R. S. Liu, J. Am. Chem. Soc. 2011, 133,
20728; b) V. V. Pagar, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 4923;
Angew. Chem. 2015, 127, 5005.
[16] W. X. Zhao, J. W. Sun, Chem. Rev. 2018, 118, 10349.
[17] A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107, 4698.
[18] CCDC 1984611 (8n).
a) M. P. Doyle; M. Yan; W. Hu; L. S. Gronenberg J. Am. Chem. Soc.
2003, 125, 4692. b) F. J. Sarabia, Q. K. Li, E. M. Ferreira, Angew. Chem.
Int. Ed. 2018, 57, 11015; Angew. Chem. 2018, 130, 11181. c) A. S. K.
Raj, R. S. Liu, Angew. Chem. Int. Ed. 2019, 58, 10980; Angew. Chem.
2019, 131, 11096.
[19] J. Yang, T. T. Hoang, G. B. Dudley, Org. Chem. Front. 2019, 6, 2560.
[20] Reassessment of results presented in Scheme 5 showed that the alkyne
cleavage product was present in most reaction mixtures, albeit in small
amounts, but in 7% yield from reaction with 9b.
[7]
a) A. B. Smith III, R. K. Dieter, Tetrahedron 1981, 37, 2407; b) L. I. Smith,
Chem. Rev. 1938, 23, 193. c) E. A. Jefferson, A. J. Kresge, S. W. Paine,
This article is protected by copyright. All rights reserved.