84
P. Giannoccaro et al. / Applied Catalysis A: General 375 (2010) 78–84
[2] (a) F.W. Li, X.G. Peng, C.G. Xia, B. Hu, Chin. J. Chem. 23 (2005) 643–645;
Although the data reported above individuate in the discussed
(b) I. Chiarotto, M. Feroci, Tetrahedron Lett. 42 (2001) 3451–3453;
(c) B. Gabriele, R. Mancuso, G. Salerno, M. Costa, J. Org. Chem. 68 (2003) 601–604;
(d) B. Gabriele, G. Salerno, D. Brindisi, M. Costa, G.P. Chiusoli, Org. Lett. 2 (2000)
625–627;
(e) K. Orito, M. Miyazawa, T. Nakamura, A. Horibata, H. Ushito, H. Nagasaki, M.
Yuguchi, S. Yamashita, T. Yamazaki, M. Tokuda, J. Org. Chem. 71 (2006) 5951–
5958.
mechanism a very plausible reaction pathway, we also note that
iodine formed in the reaction mixture may open an additional way
to the formation of the target product and the regeneration of the
Pd(II)-catalyst (Scheme 4 routes 2–3). Elsewhere [11,12], in fact,
we have demonstrated that iodine can easily react with Pd-
carbamoyl complexes. This reaction can regenerate the starting
Pd-catalyst and afford a reactive carbamoyl iodide (Eq. (12)), which
can be converted into urea by reaction in situ with the substrate
(Eq. (13)).
[3] (a) F.W. Li, C.G. Xia, J. Catal. 227 (2004) 542–546;
(b) J.M. Liu, X.G. Peng, J.H. Liu, S.Z. Zheng, W. Sun, C.G. Xia, Tetrahedron Lett. 48
(2007) 929–932.
[4] (a) N.A. Puschin, R.V. Mitic, Justus Liebigs Ann. Chem. 532 (1937) 300–303;
(b) A.F. Hegarty, L.J. Drenman, in: A.R. Katritzky, O. Meth-Cohn, C.W. Rees (Eds.),
Comprehensive Organic Functional Group Transformation, vol. 6, Pergamon,
Oxford, UK, 1998, pp. 499–526;
(c) T.P. Vishnyavova, I.A. Golubeva, E.V. Glebova, Russ. Chem. Rev. (Engl. Transl.)
54 (1985) 249–261;
(d) J.E. McClusker, A.D. Main, K.S. Johnson, C.A. Grasso, L. McElwee-White, J. Org.
Chem. 65 (2000) 5216–5222.
PdðPPh3Þ Cl½CðOÞNH-ðCH2Þx-OHꢅ þ I2
! Pdð2PPh Þ ClðIÞ þ ICðOÞNH-ðCH Þx-OH
(12)
(13)
3
2
2
[5] M.K. Leung, J.L. Lai, K.H. Lau, H.H. Yu, H.J. Hsiao, J. Org. Chem. 61 (1996) 4175–
4179.
[6] (a) J.R. Gage, D.A. Evan, Org. Synth. 68 (1990) 77–82;
(b) D.J. Ager, I. Prakash, D.R. Schaad, Chem. Rev. 96 (1996) 835–875 (and
references therein);
ICðOÞNH-ðCH2Þx-OH þ H2N-ðCH2Þx-OH
! OCðNH-ðCH2Þx-OHÞ2 þ HI
(c) M. Feroci, A. Gennaro, A. Inesi, M. Orsini, L. Palombi, Tetrahedron Lett. 43
(2002) 5863–5865.
[7] D.J. Diaz, K.G. Hylton, L. McElwee-White, J. Org. Chem. 71 (2006) 734–738.
[8] P. Giannoccaro, C.F. Nobile, M. Latronico, Inorg. Chim. Acta 175 (1990) 133–139.
[9] (a) P. Giannoccaro, N. Ravasio, M. Aresta, J. Organomet. Chem. 451 (1993) 243–
248;
(b) P. Giannoccaro, J. Organomet. Chem. 470 (1994) 249–252.
[10] P. Giannoccaro, D. Cornacchia, S. Doronzo, E. Mesto, E. Quaranta, M. Aresta,
Organometallics 25 (2006) 2872–2879.
[11] (a) P. Giannoccaro, I. Tommasi, M. Aresta, J. Organomet. Chem. 476 (1994) 13–18;
(b) M. Aresta, P. Giannoccaro, I. Tommasi, Educ. Adv. Chem. 3 (1996) 249–255;
(c) M. Aresta, P. Giannoccaro, I. Tommasi, A. Dibenedetto, A.M. Manotti, F.
Ugozzoli, Organometallics 19 (2000) 3879–3889.
[12] (a) P. Giannoccaro, A. Dibenedetto, M. Gargano, E. Quaranta, M. Aresta, Organo-
metallics 27 (2008) 967–975;
(b) P. Giannoccaro, S. Doronzo, M. Gargano, P. Masiello, E. Quaranta, M. Aresta,
Europacat VIII, 26–31 August, 2007, Turku-Finland, pp. 5–30.
[13] E. Uhlig, Z. Keiser, Anorg. Chem. 406 (1974) 1–6.
[14] J. Chatt, L.H. Venanzi, J. Chem. Soc. (1957) 2351–2355.
[15] B.J. McCormick, E.N. Jaynes Jr., R.I. Caplan, H.C. Clarck, J.D. Ruddick, Inorg. Synth.
13 (1971) 216–218.
4. Conclusions
a,v-Amino alcohols have been effectively and selectively
carbonylated, in CH3CN, to symmetrical N,N0-bis(hydroxyalkyl)ur-
eas using Pd(II)/L/NEt3/HI (L = dipy, PN, PPh3, CH3CN) catalytic
systems and molecular oxygen as the oxidant. Using NEt3ꢀHI as co-
catalyst acting both as iodide source and proton donor formation of
urea proceeds efficiently under very mild conditions (303–333 K;
p(CO/O2) = 0.1 MPa). The iodide source, as well as the nature of
ancillary ligands, is of crucial importance for lifetime of catalytic
system and the efficiency of the catalytic process. The best catalytic
activities were observed using Pd-systems stabilized by mono- or
bidentate N- or P-donor ligands and employing an I/Pd molar ratio
close to 8.
The urea can be isolated in a very straightforward way and the
catalytic system can be easily recovered and recycled for several
times without showing any significant decrease in activity
(L = dipy, PN, PPh3).
A few mechanistic features of the process have also been
investigated. Formation of urea involves the intermediacy of
LnPdCl[C(O)NH-(CH2)x-OH] carbamoyl complexes. This step can
also generate Pd(0)-species, which are easily reoxidized to Pd(II) in
the presence of NEt3ꢀHI and O2.
[16] B.B. Wayland, R.F. Schramm, Inorg. Chem. 8 (1969) 971–976.
[17] M. Hidai, M. Kokura, Y. Ochida, J. Organomet. Chem. 52 (1973) 431–435.
[18] H.M. Colquhoun, D.J. Thompson, M.V. Twigg, Carbonylation: Direct Synthesis of
Carbonyl Compounds, Plenum Press, New York, 1991 (Chapter 2, p. 30).
[19] (a) B. Gabriele, M. Costa, G. Salerno, G. Chiusoli, J. Chem. Soc., Perkin Trans. 1
(1994) 83–87;
(b) B. Gabriele, G. Salerno, in: D. Crich (Ed.), PdI2 in e-EROS (Electronic Encyclo-
pedia of Reagents for Organic Synthesis), Wiley-Interscience, 2006, pp. 1–13;
(c) B. Gabriele, M. Costa, G. Salerno, G. Chiusoli, Curr. Org. Chem. 8 (2004) 919;
(d) B. Gabriele, M. Costa, G. Salerno, Synlett 14 (2004) 2468–2483;
(e) B. Gabriele, G. Salerno, Top. Organomet. Chem. 18 (2006) 239–272;
(f) B. Gabriele, G. Salerno, M. Costa, G.P. Chiusoli, J. Organomet. Chem. 687 (2003)
219–228;
Acknowledgments
(g) B. Gabriele, R. Mancuso, G. Salerno, M. Costa, Chem. Commun. 4 (2003) 486–
487;
(h) B. Gabriele, G. Salerno, R. Mancuso, M. Costa, J. Org. Chem. 69 (2004) 4741–
4750;
(i) D.J. Dı´az, A.K. Darko, L. McElwee-White, Eur. J. Org. Chem. 27 (2007) 4453–
4465.
The authors wish to thank MIUR (contract 2006031888) and
University of Bari for financial support.
[20] (a) X. Sun, X. Jiang, S. Dong, E. Wang, Macromol. Rapid Commun. 24 (2003) 1024–
1028;
Appendix A. Supplementary data
(b) T. Douglas, M. Young, Nature 393 (1998) 152–155;
(c) F.C. Meldrum, B.R. Heywood, S. Mann, Science 257 (1992) 522–523;
(d) S.-H. Yu, M. Antonietti, H. Co¨lfen, M. Giersig, Angew. Chem. Int. Ed. Engl. 41
(2002) 2356–2359;
Supplementary data associated with this article can be found, in
(e) L.I. Halaoui, Langmuir 17 (2001) 7130–7136;
(f) Q.F. Zhou, J.C. Bao, Z. Xu, J. Mater. Chem. 12 (2002) 384–387;
(g) L. Longenberger, G. Mills, J. Phys. Chem. 99 (1995) 475–478;
(h) S. Mann, J.P. Hannington, R.J.P. Williams, Nature 324 (1986) 565–567;
(i) M.P. Peleni, J. Tanori, A. Felakembo, J.C. Dedieu, T. Gulik-Krzywicki, Langmuir
14 (1998) 7359–7363.
References
[1] (a) M.R. Barbachyn, C.W. Ford, Angew. Chem. Int. Ed. 42 (2003) 2010–2013;
(b) C.M. Perry, B. Javis, Drugs 61 (2001) 525–551;
[21] (a) P. Giannoccaro, M. Aresta, S. Doronzo, C. Ferragina, Appl. Organomet. Chem.
14 (2000) 581–589;
(c) R. Norrby, Exp. Opin. Pharmacother. 2 (2001) 293–302;
(d) D. Clemmet, A. Markhan, Drugs 59 (2000) 815–827;
(e) T.A. Muktar, G.D. Wright, Chem. Rev. 105 (2005) 529–542;
(f) J.M. Cassady, K.K. Chan, E.G. Floss, E. Leistner, Chem. Pharm. Bull. 52 (2004)
1–26.
(b) P. Giannoccaro, S. Doronzo, C. Ferragina, in: H.U. Blaser, A. Baiker, R. Prins
(Eds.), Homogeneous Catalysis and Fine Chemicals IV, Elsevier Science B.V., 1997,
pp. 633–640.