Paper
RSC Advances
antennas molecules appended horizontal anchor porphyrin 14 M. S. Choi, T. Yamazaki, I. Yamazaki and T. Aida, Angew.
(ZnPA) via metal–ligand axial coordination and modied the Chem., Int. Ed., 2004, 43, 150–158.
nano-structured TiO2 electrode surface. The optical, photovol- 15 M. Morisue, S. Yamatsu, N. Haruta and Y. Kobuke, Chem.–
taic, transient photovoltage decay and theory calculations of Eur. J., 2005, 11, 5563–5574.
these assemblies are also prepared. In addition, the assembly 16 C. B. Kc, K. Stranius, P. D'Souza, N. K. Subbaiyan,
devices afford more effective transmission channel of the
charge separated state than mono-horizontal anchor porphyrin,
H. Lemmetyinen, N. V. Tkachenko and F. D'Souza, J. Phys.
Chem. C, 2013, 117, 763–773.
¨
which is exhibits a better photovoltaic performance. This work 17 C. Siegers, J. Hohl-Ebinger, B. Zimmermann, U. Wurfel,
¨
provides a basis for further investigation in supramolecular
solar cells.
R. Mulhaupt, A. Hinsch and R. Haag, ChemPhysChem,
2007, 8, 1548–1556.
18 A. Kira, T. Umeyama, Y. Matano, K. Yoshida, S. Isoda,
J. K. Park and H. Imahori, J. Am. Chem. Soc., 2009, 131,
3198–3200.
Acknowledgements
The National Natural Science Foundation of China (No.
21461023) has supported this work. We are very grateful to Prof.
Peng Wang (Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences) for supplying device fabrication
and measurement of solar cells. We also acknowledge the
support of Gansu Computing Center of china.
19 N. K. Subbaiyan, C. A. Wijesinghe and F. D'Souza, J. Am.
Chem. Soc., 2009, 131, 14646–14647.
20 J. Cao, J. C. Liu, W. T. Deng, R. Z. Li and N. Z. Jin, Electrochim.
Acta, 2013, 112, 515–521.
21 Y. Wu, J. C. Liu, J. Cao, R. Z. Li and N. Z. Jin, Res. Chem.
Intermed., 2015, 41, 6833–6842.
22 L. Leondiadis and M. Momenteau, J. Org. Chem., 1989, 54,
6135–6138.
23 N. Cai, Y. Wang, M. Xu, Y. Fan, R. Z. Li, M. Zhang and
P. Wang, Adv. Funct. Mater., 2013, 23, 1846–1854.
24 P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet,
References
1 A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran,
M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh,
S. M. Zakeeruddin and M. Gratzel, Science, 2011, 334, 629–
¨
¨
R. Humphry-Baker and M. Gratzel, J. Phys. Chem. B, 2003,
634.
107, 14336–14341.
2 T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau and
25 B. B. Ivanova and M. Spiteller, J. Inclusion Phenom.
Macrocyclic Chem., 2013, 75, 211–221.
¨
M. Gratzel, Angew. Chem., Int. Ed., 2010, 49, 6646–6649.
3 A. J. Mozer, M. J. Griffith, G. Tsekouras, P. Wagner,
G. G. Wallace, S. Mori and L. Du, J. Am. Chem. Soc., 2009,
131, 15621–15623.
4 W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner,
P. J. Walsh, K. C. Gordon and D. L. Officer, J. Phys. Chem.
C, 2007, 111, 11760–11762.
26 C. Yang, Z. Yang, H. Gu, C. K. Chang, P. Gao and B. Xu,
Chem. Mater., 2008, 20, 7514–7520.
´
´
´
27 B. C. O'Regan, I. Lopez-Duarte, M. V. Martınez-Dıaz,
A. Forneli, J. Albero, A. Morandeira and J. R. Durrant, J.
Am. Chem. Soc., 2008, 130, 2906–2907.
´
´
28 E. Palomares, M. V. Martınez-Dıaz, S. A. Haque, T. Torres
and J. R. Durrant, Chem. Commun., 2004, 18, 2112–2113.
29 S. Verma and H. N. Ghosh, J. Phys. Chem. Lett., 2012, 3, 1877.
30 C. Nakul, S. M. Maiti and N. J. Periasamy, J. Phys. Chem. B,
1998, 102, 1528–1538.
¨
5 B. O'regan and M. Gratzel, Nature, 1991, 353, 737–740.
6 W. M. Campbell, A. K. Burrell, D. L. Officer and K. W. Jolley,
Coord. Chem. Rev., 2004, 248, 1363–1379.
7 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker,
¨
B. F. Curchod, N. Ashari-Astani and M. Gratzel, Nat. Chem.,
31 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman and H. Nakatsuji, Gaussian
09, revision A. 02, Gaussian, Inc., Wallingford, CT, USA, 2009.
32 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283.
33 R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang and P. Wang,
J. Phys. Chem. C, 2009, 113, 7469–7479.
2014, 6, 242–247.
8 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson,
Chem. Rev., 2010, 110, 6595–6663.
9 F. Gou, X. Jiang, R. Fang, H. W. Jing and Z. P. Zhu, ACS Appl.
Mater. Interfaces, 2014, 6, 6697–6703.
´
10 C. L. Mai, T. Moehl, C. H. Hsieh, J. D. Decoppet,
34 B. C. O'Regan and J. R. Durrant, Acc. Chem. Res., 2009, 42,
1799–1808.
¨
S. M. Zakeeruddin, M. Grazel and C. Y. Yeh, ACS Appl.
Mater. Interfaces, 2015, 7, 14975–14982.
´
35 Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert and P. Wang,
11 T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito and
H. Imahori, Angew. Chem., 2015, 127, 9180–9184.
12 J. Rochford, D. Chu, A. Hagfeldt and E. Galoppini, J. Am.
Chem. Soc., 2007, 129, 4655–4665.
Chem. Rev., 2014, 114, 10095–10130.
36 A. Nakano, T. Yamazaki, Y. Nishimura, I. Yamazaki and
A. Osuka, Chem.–Eur. J., 2000, 6, 3254–3271.
13 F. D'Souza and O. Ito, Chem. Soc. Rev., 2012, 41, 86–96.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 60773–60779 | 60779