Scheme 6 Reagents and conditions: i, SiO2, PhCH3, D.
carbonate 20 the PhS group is adjacent to two similarly acylated
carbons and the new product is the result of a further
rearrangement to another five-membered-ring carbonate 21
(Scheme 6). This reaction is the first example of a PhS double
migration in this type of rearrangement process.
We thank the EPSRC for financial assistance towards the
purchase of the Nonius CCD diffractometer, and a studentship
(L. C.).
Fig. 1 Molecular structure of syn-carbamates 10 and 13 determined by X-
ray analysis. Pictured is only one of the two enantiomers of 13 in the unit
cell, each with a slightly different conformation.
Notes and references
†
Crystal data for 10: C16H21NO2S, M = 291.40, orthorhombic, space
group P212121 (no. 19), a = 6.7248(2), b = 13.1339(8), c = 16.6976(9) Å,
U = 1474.8(2) Å3, Z = 4, µ(Mo-Ka) = 0.221 mm21, 6257 reflections
measured at 180(2) K using an Oxford Cryosystems Cryostream cooling
apparatus, 2568 unique (Rint = 0.041); R1 = 0.037, wR2 = 0.085. Absolute
structure parameter 0.04(8). The structure was solved with SHELXS-9723
and refined with SHELXL-97.23 CCDC 207751.
For 13: C16H21NO2S, M = 291.40, monoclinic, space group P21/c (no.
14), a = 10.8413(3), b = 14.7036(9), c = 19.2137(11) Å, b = 90.201(3)°,
U = 3062.8(3) Å3, Z = 8, µ(Mo-Ka) = 0.213 mm21, 18109 reflections
measured at 180(2) K using an Oxford Cryosystems Cryostream cooling
apparatus, 5375 unique (Rint = 0.097); R1 = 0.052, wR2 = 0.095. The
structure was solved with SHELXS-9723 and refined with SHELXL-97.23
tallographic data in CIF or other electronic format.
Scheme 4 Reagents and conditions: i, LDA, THF, 278 °C; BrCH2CO2Et,
HMPA, 73%; ii, NaBH4, THF, 0 °C, 18%; iii, SiO2, CHCl3, D.
Silica gel also catalyses the generation of episulfonium ions
from esters and carbonates,1 and we were interested to see
whether this occurred with related lactones and cyclic carbon-
ates. Five-membered-ring compounds 16 (Scheme 4) and 19
(Scheme 5) were made from known intermediates ketone15 15
and olefin16 18 respectively, and were treated with silica gel. In
refluxing chloroform both compounds formed equilibrium
mixtures with their six-membered-ring isomers 17 and 20 (16 :
17 75 : 25 and 19 : 20 91 : 9), again without any loss of CO2
from the carbonate. The position of equilibrium for the lactone
favours the five-membered ring, a result in sharp contrast to the
equivalent cyclic ethers where the THP is the only product in a
thermodynamically controlled isomerisation,17 so the inclusion
of a carbonyl group stabilises the five-membered ring with
respect to the six-membered ring. The additional oxygen atom
in the carbonates 19 and 20 favours the five-membered ring
even more. Five- and six-membered phenylseleno-lactones18
have been shown to interconvert with strong acid or Lewis acid
catalysis,19 or on standing.20 Silica gel also isomerises b- to g-
lactones via episulfonium21 and episelenonium21 ions. Phenyl-
seleno-containing cyclic carbonates similar to compounds 19
and 20 also interconvert during silica column chromatog-
raphy.22
1 L. Caggiano, D. J. Fox and S. Warren, Chem. Commun., 2002, 2528.
2 L. Caggiano, J. Davies, D. J. Fox, D. C. Moody and S. Warren, Chem.
Commun., 2003, DOI: 10.1039/b303790h, preceding communication.
3 E. Pombo-Villar, J. Boelsterli, M. M. Cid, J. France, B. Fuchs, M.
Walkinshaw and H.-S. Weber, Helv. Chim. Acta, 1993, 76, 1203.
4 O. Kitagawa, T. Suzuki and T. Taguchi, J. Org. Chem., 1998, 63,
4842.
5 O. Kitagawa, T. Suzuki and T. Taguchi, Tetrahedron Lett., 1997, 38,
8371.
6 S. Robin and G. Rousseau, Eur. J. Org. Chem., 2000, 3007.
7 D. Naskar and S. Roy, J. Chem. Soc., Perkin Trans. 1, 1999, 2435.
8 F. Homsi and G. Rousseau, J. Org. Chem., 1999, 64, 81.
9 M. Ihara, Y. Haga, M. Yonekura, T. Ohsawa, K. Fukumoto and T.
Kametami, J. Am. Chem. Soc., 1983, 105, 7345.
10 M. Ihara, K. Fukumoto and T. Kametani, Heterocycles, 1982, 19,
1435.
11 V. K. Aggarwal, I. Coldham, S. McIntyre and S. Warren, J. Chem. Soc.,
Perkin Trans. 1, 1991, 451.
12 M. Muehlstaedt, R. Meusinger, B. Olk, L. Weber and R. Widera, J.
Prakt. Chem., 1986, 328, 309.
13 D. Brugier, F. Outurquin and C. Paulmier, J. Chem. Soc., Perkin Trans.
1, 2001, 37.
14 S. Takano and S. Hatakeyama, Heterocycles, 1982, 19, 1243.
15 P. Brownbridge, P. K. G. Hodgson, R. Shepherd and S. Warren, J.
Chem. Soc., Perkin Trans. 1, 1976, 1695.
When the mixture of carbonates 19 and 20 was heated in
toluene at reflux a third identifiable carbonate was formed. In
16 L. Djakovitch, J. Eames, D. J. Fox, F. H. Sansbury and S. Warren, J.
Chem. Soc., Perkin Trans. 1, 1999, 2771.
17 D. J. Fox, D. House and S. Warren, Angew. Chem., Int. Ed., 2002, 41,
2462.
18 S. Murata and T. Suzuki, Chem. Lett., 1987, 849.
19 D. L. J. Clive, C. G. Russell, G. Chittattu and A. Singh, Tetrahedron,
1980, 36, 1399.
20 R. Deziel and E. Malenfant, J. Org. Chem., 1995, 60, 4660.
21 K. C. Nicolaou, S. P. Seitz, W. J. Sipio and J. Blount, J. Am. Chem. Soc.,
1979, 101, 3884.
22 J. D. Buynak, R. Chandrasekaran, A. G. M. Barrett, R. P. Attrill and M.
J. Betts, J. Org. Chem., 1985, 50, 5362.
23 G. M. Sheldrick, SHELXS-97/SHELXL-97, University of Göttingen,
Germany, 1997.
Scheme 5 Reagents and conditions: i, OsCl3, K3Fe(CN)6, K2CO3,
quinuclidine, t-BuOH, H2O; ii, CDI, CH3CN, 40% (2 steps), iii, SiO2,
CHCl3, D.
CHEM. COMMUN., 2003, 1650–1651
1651