Journal of the American Chemical Society
Communication
44, 2305. (h) Nandakumar, A.; Midya, S. P.; Landge, V. G.; Balaraman, E.
Angew. Chem., Int. Ed. 2015, 54, 11022. (i) Leonard, J.; Blacker, A. J.;
Marsden, S. P.; Jones, M. F.; Mulholland, K. R.; Newton, R. Org. Process
Res. Dev. 2015, 19, 1400.
compound with Br2 followed by reduction of the acid bromide
withDIBAL-H provided ( )-3-methyl-5-phenylpentanol (48)in
70% yield in a one-pot process (Scheme 7).
(2)(a)Chan, L. M.K.;Poole, D.L.;Shen,D.;Healy,M. P.;Donohoe, T.
J. Angew. Chem., Int. Ed. 2014, 53, 761. (b) Shen, D.; Poole, D. L.;
Shotton, C. C.; Kornahrens, A. F.; Healy, M. P.; Donohoe, T. J. Angew.
Chem., Int. Ed. 2015, 54, 1642. (c) Frost, J. R.; Cheong, C. B.; Donohoe,
T. J. Synthesis 2017, 49, 910.
Scheme 7. Synthesis of ( )-3-Methyl-5-phenylpentanol
(3) (a) Musa, S.; Ackermann, L.; Gelman, D. Adv. Synth. Catal. 2013,
355, 3077. (b) Madsen, R.; Makarov. J. Org. Chem. 2013, 78, 6593.
(c) Chaudhari, C.; Siddiki, S. M. A. H.; Shimizu, K. Top. Catal. 2014, 57,
1042.
(4) For hydrogen borrowing reactions using secondary alcohols with
amines: (a) Tillack, A.; Hollmann, D.; Michalik, D.; Beller, M.
Tetrahedron Lett. 2006, 47, 8881. (b) Hollmann, D.; Tillack, A.;
Michalik, D.; Jackstell, R.; Beller, M. Chem. - Asian J. 2007, 2, 403.
(c) Fujita, K.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943.
(d) Haniti, M.; Hamid, S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.;
Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am. Chem. Soc. 2009,
131, 1766. (e) Marichev, K. O.; Takacs, J. M. ACS Catal. 2016, 6, 2205.
(5) For a related Meerwein−Pondorf−Verley-type process with
secondary alcohols, see: Black, P. J.; Harris, W.; Williams, J. M. J.
Angew. Chem., Int. Ed. 2001, 40, 4475.
(6) For the alkylation or formation of heterocycles using hydrogen
borrowing or related chemistry, see: (a) Tsuji, Y.; Huh, K.; Watanabe, Y.
Tetrahedron Lett. 1986, 27, 377. (b) Tsuji, Y.; Huh, K.; Watanabe. J. Org.
Chem. 1987, 52, 1673. (c) Aramoto, H.; Obora, Y.; Ishii, Y. J. Org. Chem.
2009, 74, 628. (d) Xiong, B.; Li, Y.; Lv, W.; Tan, Z.; Jiang, H.; Zhang, M.
Org. Lett. 2015, 17, 4054. (e) Bartolucci, S.; Mari, M.; Di Gregorio, G.;
Piersanti, G. Tetrahedron 2016, 72, 2233.
In conclusion, we have shown that enolate alkylation using
secondary alcohols can be achieved under hydrogen borrowing
conditions to provide a number of β-branched products. The use
of Ph* as a design element was crucial to the success of this
methodology, preventing self-condensation of starting substrate
1. Slowoxidationof thesecondary alcoholcouplingpartner under
the catalytic conditions then enabled the formation of the desired
cross-coupled products. In several cases substrate-induced
diastereoselectivity was observed which is an area for further
development. Preliminary experiments have shown that an
intramolecular approach is feasible for allowing α-alkylation of
the β-branched products, delivering 1,2-disubstituted cyclo-
pentane 31 in good yield and as a single diastereoisomer. Finally,
the Ph* group was readily cleaved to provide a series of β-
branched esters and amides as well as the industrially important
compound ( )-3-methyl-5-phenylpentanol.
(7) For related processes using secondary alcohols, see: (a) Anxionnat,
B.; Pardo, D. G.; Ricci, G.; Cossy, J. Eur. J. Org. Chem. 2012, 2012, 4453.
(b) Lee, D.; Kwon, K.; Yi, C. S. J. Am. Chem. Soc. 2012, 134, 7325.
ASSOCIATED CONTENT
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
■
́
(c)Han,X.;Wu, J.Angew. Chem., Int.Ed.2013, 52, 4637.(d)Pena-Lopez,
̃
M.; Neumann, H.; Beller, M. Chem. Commun. 2015, 51, 13082.
(8) Sawaguchi, T.; Obora, Y. Chem. Lett. 2011, 40, 1055.
S
(9) Frost, J. R.; Cheong, C. B.; Akhtar, W. M.; Caputo, D. F. J.;
Stevenson, N. G.; Donohoe, T. J. J. Am. Chem. Soc. 2015, 137, 15664.
(10) Replacing 1 with acetophenone gave a complex mixture of self-
coupled and cross-coupled products. In contrast, substitution of 1 with
either Ph*COCH2CH3 or tert-butyl acetate under identical conditions
gave no alkylated product (see SI).
(11) (a) Sauvage, J.; Baker, R. H.; Hussey, A. S. J. Am. Chem. Soc. 1960,
82, 6090. (b) Huff, B. E.; Khau, V. V.; LeTourneau, M. E.; Martinelli, M.
J.; Nayyar, N. K.; Peterson, B. C. Tetrahedron Lett. 1997, 38, 8627.
(12)SinglecrystalX-raydiffractiondatawerecollectedusinga(Rigaku)
Oxford Diffraction SuperNova diffractometer and CrysAlisPro.
Structures were solved using ‘Superflip’ before refinement with
CRYSTALS as per the SI (CIF). Crystallographic data have been
deposited with the Cambridge Crystallographic Data Centre (CCDC
request/cif. For particular details concerning solving and refining these
structures, see:(a)Palatinus, L.;Chapuis, G. J. Appl. Crystallogr. 2007, 40,
786. (b) Parois, P.; Cooper, R. I.; Thompson, A. L. Chem. Cent. J. 2015, 9,
30. (c) Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Crystallogr.
2010, 43, 1100.
Experimental procedures and spectroscopic data for all
Crystallographic data (CIF)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Author Contributions
§W.M.A., C.B.C., and J.R.F. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(13) The relative stereochemistry of 43 was assigned by comparison of
its13CNMRdatatoverycloselyrelatedcyclopentanes.See:(a)Canonne,
P.; Plamondon, J. Can. J. Chem. 1989, 67, 555. (b) Gilbert, J. C.; Yin, J.;
Fakhreddine, F. H.; Karpinski, M. L. Tetrahedron 2004, 60, 51.
(c) Gilbert, J. C.; Yin, J. Tetrahedron 2008, 64, 5482.
(14) A selection of different nucleophiles will react with the in situ
generated acid bromide; see ref 9.
(15) Tikad, A.; Delbrouck, J. A.; Vincent, S. P. Chem. - Eur. J. 2016, 22,
We thank GlaxoSmithKline (W.M.A.), A*STAR, Singapore
(C.B.C.), and the EPSRC [J.R.F., T.J.D., Established Career
Fellowship (EP/L023121/1)] for financial support.
REFERENCES
■
(1) For representative reviews, see: (a) Dobereiner, G. E.; Crabtree, R.
H. Chem. Rev. 2010, 110, 681. (b) Bahn, S.; Imm, S.; Neubert, L.; Zhang,
̈
M.; Neumann, H.; Beller, M. ChemCatChem 2011, 3, 1853. (c) Pan, S.;
Shibata, T. ACS Catal. 2013, 3, 704. (d) Gunanathan, C.; Milstein, D.
Science 2013, 341, 1229712. (e) Ketcham, J. M.; Shin, I.; Montgomery, T.
P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142. (f) Obora, Y. ACS
Catal. 2014, 4, 3972. (g) Yang, Q.; Wang, Q.; Yu, Z. Chem. Soc. Rev. 2015,
9456.
(16) For an example of intramolecular lactone formation from an acid
chloride, see: Wąsek, K.; Kędzia, J.; Krawczyk, H. Tetrahedron:
Asymmetry 2010, 21, 2081.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX