Organometallics
Article
Systems by Transition Metal Complexes. Chem. Rev. 2017, 117,
9404−9432. (b) Chen, P.-H.; Billett, B. A.; Tsukamoto, T.; Dong, G.
Cut and Sew” Transformations via Transition-Metal-Catalyzed
Carbon−Carbon Bond Activation. ACS Catal. 2017, 7, 1340−1360.
(c) For an alternative example of C−C cleavage driven by strain, see
Fawcett, A.; Biberger, T.; Aggarwal, V. K. Carbopalladation of C−C
σ-bonds enabled by strained boronate complexes. Nat. Chem. 2019,
11, 117.
(7) (a) Suggs, J. W.; Jun, C.-H. Directed cleavage of carbon-carbon
bonds by transition metals: the α-bonds of ketones. J. Am. Chem. Soc.
1984, 106, 3054. (b) Jun, C.-H.; Lee, H. Catalytic Carbon−Carbon
Bond Activation of Unstrained Ketone by Soluble Transition-Metal
Complex. J. Am. Chem. Soc. 1999, 121, 880. (c) Xia, Y.; Wang, J.;
Dong, G. Suzuki−Miyaura Coupling of Simple Ketones via Activation
of Unstrained Carbon−Carbon Bonds. J. Am. Chem. Soc. 2018, 140,
5347−5351. (d) Just-Baringo, X.; Larrosa, I. Ketone C−C Bond
Activation Meets the Suzuki-Miyaura Cross-coupling. Chem. 2018, 4,
1203. (e) Zhu, J.; Wang, J.; Dong, G. Catalytic activation of
unstrained C(aryl)−C(aryl) bonds in 2,2′-biphenols. Nat. Chem.
2019, 11, 45−51.
(8) (a) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.;
Watanabe, Y.; Mitsudo, T.-A. Ruthenium-Catalyzed β-Allyl Elimi-
nation Leading to Selective Cleavage of a Carbon−Carbon Bond in
Homoallyl Alcohols. J. Am. Chem. Soc. 1998, 120, 5587−5588.
(b) Niwa, T.; Yorimitsu, H.; Oshima, K. Palladium-Catalyzed 2-
Pyridylmethyl Transfer from 2-(2-Pyridyl)-ethanol Derivatives to
Organic Halides by Chelation-Assisted Cleavage of Unstrained Csp3-
Csp3 Bonds. Angew. Chem., Int. Ed. 2007, 46, 2643−2645. (c) Li, H.;
Li, W.; Liu, W.; He, Z.; Li, Z. An Efficient and General Iron-Catalyzed
C-C Bond Activation with 1,3-Dicarbonyl Units as a Leaving Groups.
Angew. Chem., Int. Ed. 2011, 50, 2975−2978. (d) Liu, Z.-Q.; Zhao, L.;
Shang, X.; Cui, Z. Unexpected Copper-Catalyzed Aerobic Oxidative
Cleavage of C(sp3)−C(sp3) Bond of Glycol Ethers. Org. Lett. 2012,
14, 3218−3221. (e) Cooke, H. A.; Peck, S. C.; Evans, B. S.; van der
Donk, W. A. Mechanistic Investigation of Methylphosphonate
Synthase, a Non-Heme Iron-Dependent Oxygenase. J. Am. Chem.
Soc. 2012, 134, 15660−15663. (f) Zhao, Y.; Cai, S.; Li, J.; Wang, D. Z.
Visible-light photo-catalytic C−C bond cleavages: preparations of
N,N-dialkylformamides from 1,2-vicinal diamines. Tetrahedron 2013,
69, 8129−8131. (g) Chen, Y.-C.; Zhu, M.-K.; Loh, T.-P. Csp3−Csp3
Bond Cleavage in the Palladium-Catalyzed Aminohydroxylation of
Allylic Hydrazones Using Atmospheric Oxygen as the Sole Oxidant.
Org. Lett. 2015, 17, 2712−2715. (h) Wang, D.; Mao, J.; Zhu, C.
Visible light-promoted ring-opening functionalization of unstrained
cycloalkanols via inert C−C bond scission. Chem. Sci. 2018, 9, 5805−
5809. (i) Tran, V. T.; Gurak, J. J. A.; Yang, K. S.; Engle, K. M.
Activation of diverse carbon−heteroatom and carbon−carbon bonds
via palladium(II)-catalysed β-X elimination. Nat. Chem. 2018, 10,
1126−1133.
(9) (a) Benfield, F. W. S.; Green, M. L. H. Alkyl, alkynyl, and olefin
complexes of bis(π-cyclopentadienyl)-molybdenum or -tungsten: a
reversible metal-to-ring transfer of an ethyl group. J. Chem. Soc.,
Dalton Trans. 1974, 1324−1331. (b) Eilbracht, P.; Dahler, P. Die
Spaltung nichtgespannter CC-Einfachbindungen in Tricarbonyleisen-
komplexen 5,5-dialkylsubstituierter Cyclopentadiene. Chem. Ber.
1980, 113, 542−554. (c) Hemond, R. C.; Hughes, R. P.; Locker,
H. B. Competitive C-H and C-C Activation In the Reaction of
Pentamethylcyclopentadiene with Decacarbonyldimanganese. Organo-
metallics 1986, 5, 2391−2392. (d) Jones, W. D.; Maguire, J. A.
Preparation, dynamic behavior, and C-H and C-C cleavage reactions
of (.eta.4-C5H6)Re(PPh3)2H3. Structures of (.eta.4-C5H6)Re-
(PPh3)2H3, CpRe(PPh3)2H2, and CpRe(PPh3)H4. Organometallics
1987, 6, 1301−1311. (e) Crabtree, R. H.; Dion, R. P.; Gibboni, D. J.;
McGrath, D. V.; Holt, E. M. Carbon-carbon bond cleavage in
hydrocarbons by iridium complexes. J. Am. Chem. Soc. 1986, 108,
7222−7227. (f) Crabtree, R. H.; Dion, R. P. Selective alkane C−C
bond cleavage via prior dehydrogenation by a transition metal
complex. J. Chem. Soc., Chem. Commun. 1984, 1260−1261.
(10) (a) Watson, P. L.; Roe, D. C. beta.-Alkyl transfer in a
lanthanide model for chain termination. J. Am. Chem. Soc. 1982, 104,
6471−6473. (b) Hajela, S.; Bercaw, J. E. Competitive Chain Transfer
by.beta.-Hydrogen and.beta.-Methyl Elimination for a Model Ziegler-
Natta Olefin Polymerization System [Me2Si(.eta.5-C5Me4)2]Sc-
{CH2CH(CH3)2}(PMe3). Organometallics 1994, 13, 1147−1154.
(c) Horton, A. D. Direct Observation of β-Methyl Elimination in
Cationic Neopentyl Complexes: Ligand Effects on the Reversible
Elimination of Isobutene. Organometallics 1996, 15, 2675−2677.
(d) O’Reilly, M. E.; Dutta, S.; Veige, A. S. β-Alkyl Elimination:
Fundamental Principles and Some Applications. Chem. Rev. 2016,
116, 8105−8145.
(11) (a) Nairoukh, Z.; Cormier, M.; Marek, I. Merging C−H and
C−C bond cleavage in organic synthesis. Nat. Rev. Chem. 2017, 1,
0035. (b) Ye, J.; Shi, Z.; Sperger, T.; Yasukawa, Y.; Kingston, C.;
Schoenebeck, F.; Lautens, M. Remote C−H alkylation and C−C
bond cleavage enabled by an in situ generated palladacycle. Nat. Chem.
2017, 9, 361−368.
(12) Schwarz, H. Remote functionalization of C-H and C-C bonds
by ″naked″ transition-metal ions (Cosi Fan Tutte). Acc. Chem. Res.
1989, 22, 282−287.
(13) (a) Aïssa, C.; Furstner, A. A Rhodium-Catalyzed C−H
̈
Activation/Cycloisomerization Tandem. J. Am. Chem. Soc. 2007,
129, 14836−14837. (b) Seiser, T.; Roth, O. A.; Cramer, N.
Enantioselective Synthesis of Indanols from tert-Cyclobutanols
Using a Rhodium-Catalyzed C-C/C-H Activation Sequence. Angew.
́
Chem., Int. Ed. 2009, 48, 6320−6323. (c) Crepin, D.; Tugny, C.;
Murray, J.-H.; Aïssa, C. Facile and chemoselective rhodium-catalysed
intramolecular hydroacylation of α,α-disubstituted 4-alkylidenecyclo-
propanals. Chem. Commun. 2011, 47, 10957−10959. (d) Masarwa, A.;
Didier, D.; Zabrodski, T.; Schinkel, M.; Ackermann, L.; Marek, I.
Merging allylic carbon−hydrogen and selective carbon−carbon bond
activation. Nature 2014, 505, 199−203. (e) Masarwa, A.; Weber, M.;
Sarpong, R. Selective C−C and C−H Bond Activation/Cleavage of
Pinene Derivatives: Synthesis of Enantiopure Cyclohexenone
Scaffolds and Mechanistic Insights. J. Am. Chem. Soc. 2015, 137,
6327−6334. (f) Xia, Y.; Lu, G.; Liu, P.; Dong, G. Catalytic activation
of carbon−carbon bonds in cyclopentanones. Nature 2016, 539, 546−
550. (g) Wang, G.-W.; Bower, J. F. Modular Access to Azepines by
Directed Carbonylative C−C Bond Activation of Aminocyclopro-
panes. J. Am. Chem. Soc. 2018, 140, 2743−2747.
(14) (a) Cui, S.; Zhang, Y.; Wu, Q. Rh(III)-catalyzed C−H
activation/cycloaddition of benzamides and methylenecyclopropanes:
divergence in ring formation. Chem. Sci. 2013, 4, 3421−3426. (b) Wu,
J.-Q.; Qiu, Z.-P.; Zhang, S.-S.; Liu, J.−G.; Lao, Y.-X.; Gu, L.-Q.;
Huang, Z. S.; Li, J.; Wang, H. Rhodium(III)-catalyzed C−H/C−C
activation sequence: vinylcyclopropanes as versatile synthons in direct
C−H allylation reactions. Chem. Commun. 2015, 51, 77−80. (c) Zell,
D.; Bu, Q.; Feldt, M.; Ackermann, L. Mild C−H/C−C Activation by
Z-Selective Cobalt Catalysis. Angew. Chem., Int. Ed. 2016, 55, 7408−
7412. (d) Meyer, T. H.; Liu, W.; Feldt, M.; Wuttke, A.; Mata, R. A.;
Ackermann, L. Manganese(I)-Catalyzed Dispersion-Enabled C−H/
C−C Activation. Chem. - Eur. J. 2017, 23, 5443−5447. (e) Liang, Y.-
F.; Muller, V.; Liu, W.; Munch, A.; Stalke, D.; Ackermann, L.
̈ ̈
Methylenecyclopropane Annulation by Manganese(I)-Catalyzed
Stereoselective C-H/C-C Activation. Angew. Chem., Int. Ed. 2017,
56, 9415−9419. (f) Lu, Q.; Klauck, F. J. R.; Glorius, F. Manganese-
catalyzed allylation via sequential C−H and C−C/C−Het bond
activation. Chem. Sci. 2017, 8, 3379−3383. (g) Li, M.; Kwong, F. Y.
Cobalt-Catalyzed Tandem C−H Activation/C−C Cleavage/C−H
Cyclization of Aromatic Amides with Alkylidenecyclopropanes.
Angew. Chem., Int. Ed. 2018, 57, 6512−6516.
̈
(15) For recent works see (a) Yoon, H.; Rolz, M.; Landau, F.;
Lautens, M. Palladium-Catalyzed Spirocyclization through C-H
Activation and Regioselective Alkyne Insertion. Angew. Chem., Int.
́
́
́
Ed. 2017, 56, 10920−10923. (b) Perez-Gomez, M.; Hernandez-
́
Ponte, S.; Bautista, D.; García-Lopez, J.-A. Synthesis of spiro-
oxoindoles through Pd-catalyzed remote C−H alkylation using α-
diazocarbonyl compounds. Chem. Commun. 2017, 53, 2842−2845.
G
Organometallics XXXX, XXX, XXX−XXX