(Mϩ, 100%). 7-H2: δH (400 MHz, CDCl3): Ϫ2.29 (2H, br s, NH),
1.11 (12H, t, J 7.6, CH2CH3), 1.27 (12H, s, CH3), 1.76 (8H, m,
J 7.6, CH2CH2CH3), 2.09 (6H, s, PhCH3), 2.19 (8H, m, J 7.6,
CH2CH2CH2), 2.44 (12H, s, CH3), 4.01 (8H, m, J 7.6,
CH2CH2CH2), 7.80 (2H, d, J 8.0, Ph), 8.27 (2H, d of d, 1J 8.0,
(2H, d of d, 1J 8.0, 3J 1.6, Ph), 8.03 (2H, d, 3J 1.6, Ph), 9.62 (2H,
s, CHO), 9.90 (2H, s, meso). UV-vis (CHCl3) λmax/nm (ε/103 dm3
molϪ1 cmϪ1): 324 (18.4), 410 (186.5), 531 (11.4), 566 (16.8).
MALDI-TOF MS: m/z 882.3 (Mϩ, 100%).
3
3J 1.6, Ph), 8.50 (2H, d, J 1.6, Ph), 10.23 (2H, s, meso), 10.28
6-Cu and 7-Cu. Procedure as for nickel. 6-Cu (αβ isomer):
UV-vis (CHCl3) λmax/nm (ε/103 dm3 molϪ1 cmϪ1): 334 (22.1), 411
(304.5), 534 (15.1), 570 (14.0). MALDI-TOF MS: m/z 888.3
(Mϩ, 100%). 7-Cu (αα isomer): UV-vis (CHCl3) λmax/nm (ε/103
dm3 molϪ1 cmϪ1): 332 (4.9), 411 (277.1), 534 (12.6), 570 (11.9).
MALDI-TOF MS: m/z 888.3 (Mϩ, 100%).
(2H, s, CHO). δH (400 MHz, CD3C6D5): Ϫ1.59 (2H, br s, NH),
1.10 (12H, t, J 7.6, CH2CH3), 1.76 (8H, m, J 7.6, CH2CH2CH3)
1.91 (6H, s, CH3), 2.23 (8H, m, J 7.6, CH2CH2CH2), 2.44 (12H,
s, CH3), 3.98 (8H, t, J 7.6, CH2CH2CH2), 7.32 (2H, d, J 8.0, Ph),
1
8.07 (2H, d, J 8.0, Ph), 8.07 (2H, s, Ph), 9.89 (2H, s, meso),
10.42 (2H, s, CHO). UV-vis (CHCl3) λmax/nm (ε/103 dm3 molϪ1
cmϪ1): 434 (177.4), 538 sh (1.6), 574 (9.4), 618 (2.9). MALDI-
TOF MS: m/z 827.5 (Mϩ, 100%).
Kinetic studies
The porphyrin to be studied was dissolved into d8 toluene (typi-
cal concentration 5 mmol lϪ1) and placed into a pressure NMR
tube which was then sealed. The sample was heated at a fixed
temperature for a set period of time. Accurate proton inte-
grations could not be determined from the 1H spectrum of the
atropisomers at elevated temperatures due to the overlap of
signals of interest; therefore, the reaction was quenched by co-
oling the sample rapidly to room temperature and the 1H NMR
spectrum was recorded. Rates were determined from a plot of
change in concentration of reactant against time, which follows
first-order kinetics in the initial stages of the interconversion.
Rates were determined from extrapolation of several data
points. Typically, 10–15 data points were used for the majority
of temperatures (at the very highest temperature, the rate
of reaction was such that only 3 points could be obtained).
Enthalpy values were determined from an Arrenhius plot over
five different temperatures (three for 7-Ni).
6-Zn and 7-Zn. To 6-H2 or 7-H2 (0.030 g, 0.036 mmol)
dissolved in CH2Cl2 (20 ml) was added Zn(CH3COO)2ؒ2H2O
(0.048 g, 0.217 mmol) dissolved in MeOH (5 ml). The reaction
mixture was stirred for 1 h, then reduced to dryness. The residue
was dissolved in CH2Cl2 (10 ml) and then filtered through a
silica plug to give 6-Zn or 7-H2 (0.032 g, 100%). 6-Zn (αβ iso-
mer): δH (400 MHz, CDCl3): 1.10 (12H, t, J 7.6, CH2CH3), 1.75
(8H, m, J 7.6, CH2CH2CH3), 2.09 (6H, s, CH3), 2.18 (8H, m,
J 7.6, CH2CH2CH2), 2.43 (12H, s, CH3), 4.00 (8H, m, J 7.6,
CH2CH2CH2), 7.79 (2H, d, J 7.6, Ph), 8.27 (2H, d of d, 1J 7.6,
3
3J 1.6, Ph), 8.49 (2H, d, J 1.6, Ph), 10.22 (2H, s, meso) 10.27
(2H, s, CHO). δH (400 MHz, CD3C6D5): 1.14 (12H, t, J 7.6,
CH2CH3), 1.79 (8H, m, J 7.6, CH2CH2CH3), 2.01 (6H, s, CH3),
2.26 (8H, m, J 7.6, CH2CH2CH2), 2.47 (12H, s, CH3), 4.01 (8H,
t, J 7.6, CH2CH2CH2), 7.38 (2H, d, J 8.0, Ph), 8.07 (2H, d of d,
3
3
1J 8.0, J 1.6, Ph), 8.30 (2H, d, J 1.6, Ph), 9.89 (2H, s, meso),
10.36 (2H, s, CHO). UV-vis (CHCl3) λmax/nm (ε/103dm3 molϪ1
cmϪ1): 349 (20.6), 411 (288), 539 (22.5), 575 (13.9). MALDI-
TOF MS: m/z 888.2 (Mϩ, 100%). 7-Zn (αα isomer): δH (400
MHz, CD3C6D5): 1.14 (12H, t, J 7.6, CH2CH3), 1.79 (8H, m,
J 7.6, CH2CH2CH3) 2.06 (6H, s, CH3), 2.26 (8H, m, J 7.6,
CH2CH2CH2), 2.46 (12H, s, CH3), 4.02 (8H, t, J 7.6, CH2-
CH2CH2) 7.41 (2H, d, J 8.0, Ph), 8.11 (2H, d of d, 1J 8.0, 3J 1.6,
Acknowledgements
The authors would like to thank Pat Edwards for the temper-
ature calibration data and the Marsden fund for support for
P. G. P.
3
Ph), 8.24 (2H, d, J 1.6, Ph), 9.88 (2H, s, meso), 10.35 (2H, s,
References
CHO). MALDI-TOF MS: m/z 888.2 (Mϩ, 100%).
1 J. P. Collman, R. R. Gagne, C. Reed, T. R. Halbert, G. Lang and
W. T. Robinson, J. Am. Chem. Soc., 1975, 97, 1427; J. P. Collman,
R. R. Gagne, T. R. Halbert, J. C. Marchon and C. A. Reed, J. Am.
Chem. Soc., 1973, 95, 7868; J. P. Collman and T. N. Sorrell, J. Am.
Chem. Soc., 1975, 97, 4133; J. P. Collman, T. N. Sorrell and B. M.
Hoffman, J. Am. Chem. Soc., 1975, 97, 913.
2 Y. Kuroda, Y. Kato, M. Ito, J.-Y. Hasegawa and H. Ogoshi, J. Am.
Chem. Soc., 1994, 116, 10338; P. Le Maux, H. Bahri and
G. Simonneaux, J. Chem. Soc., Chem. Commun., 1991, 1350;
E. Galardon, P. L. Maux, L. Toupet and G. Simonneaux,
Organometallics, 1998, 17, 565.
3 T. Arai, A. Tsukuni, K. Kawazu, H. Aoi, T. Hamada and
N. Nishino, J. Chem. Soc., Perkin Trans. 2, 2000, 1381.
4 S. B. Ungashe and J. T. Groves, Adv. Inorg. Biochem., 1994, 9, 317;
J. Lahiri, G. D. Fate, S. B. Ungashe and J. T. Groves, J. Am. Chem.
Soc., 1996, 118, 2347.
5 J. K. M. Sanders, Compr. Supramol. Chem., 1996, 9, 131.
6 L. K. Gottwald and E. F. Ullman, Tetrahedron Lett., 1969, 3071.
7 R. A. Freitag and D. G. Whitten, J. Phys. Chem., 1983, 87, 3918.
8 J. W. Dirks, G. Underwood, J. C. Matheson and D. Gust, J. Org.
Chem., 1979, 44, 2551.
9 F. A. Walker, Tetrahedron Lett., 1971, 4949; M. J. Crossley, L. D.
Field, A. J. Forster, M. M. Harding and S. Sternhell, J. Am. Chem.
Soc., 1987, 109, 341; K. Hatano, K. Anzai, T. Kubo and S. Tamai,
Bull. Chem. Soc. Jpn., 1981, 54, 3518; K. Hatano, K. Anzai,
A. Nishino and K. Fujii, Bull. Chem. Soc. Jpn., 1985, 58, 3653;
T. Fujimoto, H. Umekawa and N. Nishino, Chem. Lett., 1992, 37;
I. Spasojevic, R. Onzeleev, P. S. White and I. Fridovich,
Inorg. Chem., 2002, 41, 5874; R. Song, A. Robert, J. Bernadou and
B. Meunier, Analusis, 1999, 27, 464; G. Reginato, L. Di Bari,
P. Salvadori and R. Guilard, Eur. J. Org. Chem., 2000, 1165.
10 K. Hatano, K. Kawasaki, S. Munakata and Y. Iitaka, Bull. Chem.
Soc. Jpn., 1987, 60, 1985.
6-Ni and 7-Ni. To Ni(CH3COO)2ؒ4H2O (0.331 g, 0.133
mmol) suspended in MeOH was added 6 or 7 (0.137 g, 0.166
mmol) dissolved in CHCl3 (50 ml). The resulting mixture was
refluxed for 2 days under an inert atmosphere in darkness. After
cooling, the solvent was removed and the resulting residue was
dissolved in CH2Cl2 (20 ml) and filtered through a silica plug to
give 6-Ni or 7-Ni (0.138 g, 95%). No sign of atropisomerism
was observed during the metallation process. 6-Ni (αβ isomer):
δH (400 MHz, CDCl3): 1.07 (12H, t, J 7.4, CH2CH3), 1.65 (8H,
m, J 7.4, CH2CH2CH3), 2.02 (8H, m, J 7.4, CH2CH2CH2), 2.09
(6H, s, CH3), 2.18 (12H, s, CH3), 3.68 (8H, m, J 7.4, CH2-
CH2CH2) 7.69 (2H, d, J 8.0, Ph), 8.16 (2H, d of d, 1J 8.0, 3J 1.6,
3
Ph) 8.25 (2H, d, J 1.6, Ph), 9.47 (2H, s, meso) 10.14 (2H, s,
CHO). δH (400 MHz, CD3C6D5): 1.03 (12H, t, J 7.6, CH2CH3),
1.63 (8H, m, J 7.6, CH2CH2CH3) 1.84 (6H, s, CH3), 2.05 (8H,
m, J 7.6, CH2CH2CH2), 2.18 (12H, s, CH3), 3.66 (8H, t, J 7.6,
CH2CH2CH2), 7.29 (2H, d, J 8.0, Ph), 7.93 (2H, d of d, 1J 8.0,
3J 1.6, Ph), 8.04 (2H, d, 3J 1.6, Ph), 9.61 (2H, s, CHO), 9.91 (2H,
s, meso). UV-vis (CHCl3) λmax/nm (ε/103 dm3 molϪ1 cmϪ1): 350
(13.7), 410 (275.3), 531 (19.5), 566 (26.5). MALDI-TOF MS:
m/z 882.2 (Mϩ, 100%). 7-Ni (αα isomer): δH (400 MHz, CDCl3):
1.05 (12H, t, J 7.2, CH2CH3), 1.63 (8H, m, J 7.2, CH2CH2CH3),
2.00 (6H, s, CH3), 2.00 (8H, m, J 7.2, CH2CH2CH2), 2.16 (12H,
s, CH3), 3.66 (8H, t, J 7.2, CH2CH2CH2), 7.66 (2H, d, J 7.6, Ph),
8.15 (2H, d, J 7.6, Ph), 8.31 (2H, s, Ph), 9.45 (2H, s, CHO),
10.14 (2H, s, meso). δH (400 MHz, CD3C6D5): 1.03 (12H, t,
J 7.6, CH2CH3), 1.63 (8H, m, J 7.6, CH2CH2CH3), 1.84 (6H, s,
CH3), 2.05 (8H, m, J 7.6, CH2CH2CH2), 2.18 (12H, s, CH3),
3.66 (8H, t, J 7.6, CH2CH2CH2), 7.29 (2H, d, J 8.0, Ph), 7.94
11 B. Zimmer, V. Bulach, C. Drexler, S. Erhardt, M. W. Hosseini and
A. De Cian, New J. Chem., 2002, 26, 43.
D a l t o n T r a n s . , 2 0 0 4 , 3 1 9 – 3 2 6
325